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The Larderello-Travale geothermal
field (LTGF; Italy)

izl

Geothermal exploitation at LTGF started in 19085; it is the
world's oldest geothermal production plant.

Actual production rate amounts to 4800 GWh / yr, which is ~ 10% of
the world's geothermal energy budget.



BASIC GEOLOGY

Oligocene-Middle Miocene
Apenninic tectonic pile of
nappes.

Adriatic paleo-margin (Tuscan
metamorphic units, Tuscan
wedge), Palaeozoic to Early
Miocene.

Pliocene & Quaternary
Granitic intrusions

G. Bertini et al. Terra
Nova, Vol 18, No. 3, 163—
169

The 2 main seismic horizons

K marker: A deep reflector entirely
reconstructed by seismic interpretation. Various
hypotheses on its origin: (brittle/ductile transition
zone, supercritical fluids, metamorphic aureole
caused by a very recent intrusion).

H_marker: Contact metamorphic aureole
associated with the shallower Pliocene granites.
The higher fracturing and permeability make this
marker a valuable target for exploitation.
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EXPLOITATION

Till early '80s: Shallow
Carbonate reservoir
T ~250° Z2<1000 m

More recently: Super-
heated (T~350°) steam
reservoirs at Z > 3500-
4000m within the
metamorphic and intrusive
units.

Casini et al., Proceedings World
Geothermal Congress 2010



The GAPSS Experiment

12-20 stand-alone seismic stations
Sensors @ 5s, 30s, 120s
Aperture: ~ 50 km

Spacing: ~ 5-10 km

GOALS:

Velocity and Q L.E.T

Anisotropy Studies

Shear-wave velocity profiles

Ambient Noise Velocity Tomography

Induced Seismicity (criteria for discernment of)

BEGIN: May, 2012
END: October, 2013



GAPSS Data Set

Depth Histogram
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Shear-Wave-Splitting: fast S-
wave polarisation directions
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The polarisation directions of the fast S-wave within the geothermal field
are much more scattered than in its peripheral parts



Shear-Wave-Splitting: S-wave
delay times
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The same holds for the delay times, which are greater
within the productive areas.
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Depth of anisotropic
layers from Dt
inversion

S-wave delay times are inverted for the
depth of anisotropic layers, for a medium
with  cylindrical simmetry.  Results
suggests that most of the anisotropy is
related to the K-horizon.

[ i [] W i ¥ 1 W ¥
[{s) i | o (] £ [} (N —
T v T T T T T T T

i N
—_ —
- o
T T

oot 002 003 0 2 4 6
Pseudo-slowness (s/km) Mumero eventi

8




Local earthquake
tomography
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"~ 900 eqs after filtering for location accuracy and station residuals (- About 4800

P- and 5100 S-waves rays)

- Forward Travel-Time calculation: finite-difference solution of the Eikonal

equation (Podvin & Lecomte, 1991);

* Inversion: The Pstomo package (by Ari Tryggvason), based upon the LSQR

conjugate gradient solver.

~ Separate inversion for P- and S-wave velocities.



Local earthquake
tomography: results
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Local earthquake tomography: results
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“ P- and S-velocity gradients follow the K-marker
“ Positive anomalies right above it



Preliminary Interpretation
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Positive anomalies in correspondence of Pliocene Granitic
intrusions
(H marker — target for deep exploitation)



Receiver Function: data-set

Back-azimuthal
periodicity =
Crustal
Anisotropy

i .

Good back—azimuthal coverage

« 5 s v § 88 33 300D

Negative arrival =
Low S-velocity layer




S-wave velocity profiles and depth of

anisotropic layers from teleseismic RF

K=0 (Isotropic component)
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Observed (a,b) and synthetic (c,d) RFs for station LA05. Data are consistent with a
P-to-S conversion due to S-velocity discontinuities, and with an anisotropic zones at
depth. (e) S-wave velocity profile used to generate the RF in (c-d). Grey-textures
indicate the anisotropic zones at depth which generates the conversion recorded on
the K=1 coefficients.



Surface wave dispersion from regional
quakes

Earthquakes data at regional distances (100-1000 km) are used to derive the
dispersion properties of Rayleigh waves, to be inverted for the shallow shear-wave

velocity structure.
Example from a Mw=4.0 earthquake at a distance of ~100km

UCkms sec)
| T

1. Group velocity dispersion for the source-
to-receiver path, after Multiple Filtering of
single-station recordings.

=40

2. Fundamental-mode Rayleigh-
wave arrivals after phase-match
filtering of multichannel data,
following the group dispersion in

[1].




Velocity (km/s)

S-wave velocity structure from
multi-modal inversion of the
dispersion curve
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The inversion is conducted
using a genetic algorithm
iterated on 1000 different
starting models, thus allowing
for a consistent definition of
confidence bounds.

3. p-o power spectrum. Dots indicate the
fundamental-mode, phase velocity dispersion
curve derived from frequency-slowness
analysis of phase-matched filtered data.

We use a misfit function based on the search of
the (f,v) points at which the determinant of the
propagator matrix attains a minimum.
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Depth [km]

Result of the multi-modal inversion
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4. Array-averaged Shear-
wave velocity profiles.

Results from the inversion
indicate two possible velocity
profiles, associated with the
fundamental and

The
former is our favorite model.

The 4-8 km depth interval is
marked by an extremely weak
velocity gradient.



Summary

1. LET has good illumination only for the shallowest 4-5 km. It resolves
well the geometry of the different intrusive bodies;

2. Shear-wave splitting of local earthquakes indicates that most of the
shallow anisotropy is likely related to the top of the deepest (K-horizon)
intrusion;

3. Teleseismic receiver functions indicate (a) low S-wave velocity gradient
over the 4-8 km depth range (consistent with 4), and anisotropic layers
over the 4-6km and 8-12km depth ranges.

4. Shear-wave velocity profiles from inversion of surface-waves of regional
earthquakes indicate a low Vs region spanning the 4-8km depth range.

Though preliminary, these resuilts indicate that the
integration of different imaging methods offers a valuable
tool for investigating the internal structure of a geothermal
field over different scale lengths.
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