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Introduction. Seismic data are often sparsely or irregularly sampled along one or more spatial 
axes. Irregular sampling can produce artifacts in seismic imaging results, thus multidimensional 
interpolation of seismic data is often a key processing step in exploration seismology.  Many 
solution methods have appeared in the literature: for instance in Spitz (1991), Sacchi (2000) it 
was proposed to perform seismic trace interpolation that handles spatially aliased events using 
the linear predictors to estimate the missing traces through linear filters in the f-x(y) domain.

Conversely, multidimensional Fourier reconstruction methods exploit a different data 
representation domain, while still assuming that seismic data consists of a superposition of 
plane waves: statistical sparsity is assumed in order to retrieve a model that consists of a few 
dominant wavenumbers representing the observations (Liu, 2004; Sacchi, 2010). In Xu (2004, 
2005) and Sacchi (2000) the so-called Antileakage Fourier Transform (ALFT) algorithm was 
proposed: it tries to resolve, or at least attenuate, the spectral leakage of the irregular Fourier 
Transform by taking advantage of the compressive sensing framework (data are assumed to be 
sparse  in the frequency-wavenumber domain). 

In more recent years, methods based on alternative local transformations, such as curvelet 
and seislet transforms (Herrmann, 2010; Fomel, 2010), have also been proposed. 

Recently, new interpolators have been developed recasting the interpolation problem to a 
compressive sensing matrix completion problem (Candes, 2009; Yang, 2013; Herrmann, 2014). 
A matrix with randomly missing entries can be completed by solving the rank minimization 
problem under the low-rank assumption of the underlying solution, that is in opposition to 
the fact that the subsampling operator tends to increase the rank of the matrix. Trickett (2010) 
proposed to apply a Cadzow filtering to solve the trace interpolation problem. The Cadzow 
algorithm replaces the block Hankel matrix of the incomplete and noisy multidimensional 
observations: it allows to recover the complete data volume by its low rank approximation and 
successive averaging along the anti-diagonals of the rank-reduced Hankel matrix. 

In recent literature, the low-rank tensor completion technique has become widely used in 
many areas such as computer vision, signal processing and seismic data analysis. This approach 
is based on a high order generalization of the low-rank matrix completion problem, and can be 
approximated by convex relaxation which minimizes the nuclear norm instead of the rank of the 
tensor. In Trickett (2013) a generalization of Hankel matrices is applied to the tensor to perform 
an efficient completion.

In order to extend these approaches from matrix to tensor completion,  we make use of 
extended notions on the concept of rank borrowed from linear algebra in conjunction with the 
high dimensional tensor theory. 

Tensor algebra is a mathematical framework that generalizes the concepts of vectors and 
matrices to higher dimensions. These tools are widely used to address problems of missing 
data in biomedical signal processing, computer vision, image processing, communication and 
seismic data processing. 

The High Order Singular Value Decomposition (HOSVD; Kolda, 2009) is used in many 
tensor rank-reduction algorithms. The HOSVD technique can be viewed as a generalization of 
the classical SVD for tensors. The computation of the HOSVD (De Lathauwer, 2000; Bergqvist, 
2010) requires performing  SVD as many times as the order of the tensor, over all the possible 
matrix representations of the tensor. Due to this fact the HOSVD can be expensive in terms of 
computational time. 

In tensor completion, the goal is to fill missing entries of a partially known tensor, under a 
low-rank condition. Many algorithms have been proposed in literature (Da Silva, 2013; Kreimer, 
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2012) to solve the low-rank tensor completion problem with global optimization methods. 
In this work, we want to introduce a new greedy algorithm, called Orthogonal Rank-One 

Tensor Pursuit (OR1TP), that extends the Orthogonal Matching Pursuit (OMP) algorithm 
(Pati, 1993; Davis, 1994) that works in multidimensional tensor space and finds a low rank 
approximation of a tensor. We present a novel seismic interpolation algorithm based on the 
rank reduction technique, that solves the low-rank Hankel tensor completion problem in the 
frequency domain and that is capable to fill missing seismic traces in 3D dataset. Finally, we 
show experimental results obtained on synthetic data to prove the effectiveness of our method.

Theory. A tensor is the generalization of vectors, matrices to higher dimensions. Let 
           be a N-th order tensor, while
denotes the indexes of the observed entries of Y. The order N of a tensor is the number of 
dimensions, also known as ways or modes.

A second-order tensor is a matrix and a first-order tensor is a vector. Let PΩ be the projector 
onto the space such that the indexes        .

It is well known that the rank of a matrix coincides with its column and row rank. The rank 
of a tensor is a much trickier concept. The rank of a tensor Y is equal to the minimum number 
of rank-one tensors that yield Y in a linear combination.

Any tensor        can be written as a linear combination of rank-one tensors, 
that is 

where     ,       are rank-one tensors such that             and r is the 
rank of the tensor Y.

Rank-One tensor decomposition, also called Canonical Polyadic Decomposition (CPD; 
Zhang, 2001), gives a compact representation of the underlying structure of the tensor, revealing 
when the tensor-data can be modeled as lying close to a low dimensional subspace. 

The low-rank tensor completion problem aims to minimize the zero-norm of θ subject to the 
equality constraint          as follows: 

Unfortunately, direct (P0) norm minimization problem is NP-hard (nondeterministic 
polynomial time hard

problem) because it is equivalent to a subset selection problem, which is itself an NP-hard 
combinatorial optimization problem (Donoho, 2004).

Orthogonal Rank-One Tensor Pursuit. We can relax the original problem by rewriting 
(P0) as follows:

The main idea is to extend the Orthogonal Matching Pursuit (OMP) procedure (Pati, 1993; 
Davis, 1994) from the vector field to the tensor field, introducing a novel greedy algorithm 
called Orthogonal Rank-One Tensor Pursuit (OR1TP) that solve (G0) problem in an efficient 
way. Following the idea proposed by (Wang, 2014), at each iteration a rank-one basis tensor is 
generated by the vectors that approximate the residual tensor of the data. After that, the weights 
of the current rank-one tensor bases are updated by performing an orthogonal projection of the 
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observation tensor on their spanning subspace. The most time consuming step of this method 
is the computation of the tensor          that best approximate the residual 
           . This step requires to solve the maximization problem:

In Zhang (2001) iterative methods, based on the Multilinear Rayleigh Quotients, are 
suggested to find a rank-one approximation of  in an efficient way. Differently from the 
classical Orthogonal Matching Pursuit algorithm, that requires the storage of the entire vectors 
bases, the proposed algorithm estimates a basis tensor only once, allowing an efficient memory 
management. 

Orthogonal Rank-One Tensor Pursuit (OR1TP) 

• Input:     and a tolerance parameter 

• Initialize:  

• Repeat
• Find a pair of singular tensors                            of the observed residual
       , set 

• Solve      reshape of    ,   reshape of 

• Set 

• Until 

• Output: 

Tab. 1. Orthogonal Rank-One Tensor Pursuit (OR1TP) solve the (OMP) by an orthogonal matching pursuit type 
greedy algorithm using rank-one tensors as the basis. Given a tensor  with missing values, finds a tensor  which 
is a low-rank approximation of the observed tensor.

Application to data interpolation problem. Recently, many trace interpolators based on 
low-rank tensor completion have been proposed. Our interpolation method considers 3D spatial 
data in frequency/space domain. We consider the case where seismic traces are attributed to a 
regular 3D grid through binning. In the case that more than one trace is assigned to a bin, we 
average them to retain only one observation in each bin. In real situations, mapping seismic 
traces from an irregular to a regular grid through the binning process, leads to a highly sparse 
volume with missing traces randomly disposed.  

Given a 3D seismic dataset in time-space domain, in order to recover missing traces, we first 
perform a 1D discrete Fourier transform on the time axis. 

A symmetric tensor is a tensor that is invariant under a permutation of its vector arguments 
            for any permutation σ. Symmetric tensors form a singular 
important class of tensors. Hankel tensors are symmetric tensors that originate from applications 
such as signal processing. Due to the fact that Hankel tensors are symmetric and then well 
structured, the low-rank assumption is enhanced by the geometrical structure of the data.
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To recover the missing samples, each frequency slice of the data in frequency-space 
domain is rearranged in a 4D Hankel tensor. This tensor can be obtained with an appropriate 
transformation as described in Trickett (2010). Given a raw 2D frequency slice , to 
form the 4D Hankel tensor , we apply the following:

where the four tensor directions have length, respectively, ,  ,  and 
, with , ,   and .

Once the tensor T is obtained, the low-rank tensor completion is performed by the OR1TP 
algorithm and the interpolated frequency slice is obtained applying the inverse transform. 

The interpolation procedure described above is summarized in Tab. 2.

• Take the Discrete Fourier Transform (DFT) of each trace in the grid
• For each frequency within the signal band

• Form a complex-value Hankel tensor T
• Perform tensor completion on T by OR1TP algorithm
• Recover the interpolated frequency slice from the completed tensor

• Take the Inverse Discrete Fourier Transform (IDFT) of each trace. 

Tab. 2. Interpolation procedure by low-rank Hankel tensor completion in frequency domain performed by the OR1TP 
greedy algorithm. 

Examples. We chose to test the proposed approach with a portion of the synthetic SEG 
Advanced Modeling Program (SEAM) 3D dataset to prove the effectiveness of our method. 
We obtained an irregularly sampled dataset from the (regularly sampled) reference data by 
removing a randomly selected subset of traces.  Two different parameter sets  have been tested: 
in the first experiment (Fig. 1), each 2D frequency slice is of size 7 × 7 samples, that rearranged 
in a Hankel tensor becomes a 4D volume of size 4 × 4 × 4 × 4. Due to the fact that the maximum 
rank of our 4D Hankel tensor is , we recovered each tensor by approximating it with a 
tensor having maximum rank equal to    . In the second experiment, the frequency 
slice is a window of size 5 × 5 samples that, once mapped to a Hankel tensor, becomes a 
multidimensional array of order 4 and size 3 × 3 × 3 × 3. Similarly to the experiment previously 

described, the maximum rank was chosen equal to      .

To better highlight the interpolation capability of the proposed approach, both experiments 
have being carried out by eliminating half of the traces in the original 3D dataset. 

The computation of the rank-one tensor that approximates the residual tensor at each 
iteration of the OR1TP is performed through the generalized iterative Rayleigh quotient method 
(Lathauwer, 2000), choosing as stopping criteria  either maximum number of iterations MaxIter 
= 20 and tolerance tol =1e-3.

Fig. 1 shows the results obtained by OR1TP greedy algorithm with frequency slices of size 
7 × 7 samples over a portion of the data containing linear events.

Fig. 2 shows the results obtained by filling the missing traces with OR1TP algorithm. In 
this case, the frequency slice size is equal to 5 × 5 samples. In this portion of data there is the 
presence of hyperbolic events with high curvature that does not influence the results of the 
reconstruction.

To evaluate quantitatively the performance of our interpolation algorithm, we chose to 
vary the percentage of randomly zeroed traces from 20% to 60% for fixed instances (5×5 and 
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7×7 frequency slice size), and to calculate the Signal to Noise Ratio of the recovered data in 
time domain. Results are showed in Fig. 3. As it was easy to guess, the reconstruction quality 
decreases as the percentage of censored traces increases, maintaining acceptable values even  
with high number of missing traces.

Fig. 1 - Results obtained on a portion of data with presence of linear events. Subset of synthetic data with 50% of 
missing traces (left), interpolation result obtained by OR1TP algorithm (right).

Fig. 2 - Results obtained on a portion of data with presence of hyperbolic events. Subset of synthetic data with 50% 
of missing traces (left), interpolation result obtained by OR1TP algorithm (right).

Fig. 3 - Quality reconstruction obtained for 5×5 and 7×7 frequency slice size, varying the number of random censored 
traces of the 3D data. The quality measure is the Signal to Noise Ratio (SNR) in dB.
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The parameters which are required by our interpolation algorithm are the spatial window 
size and the maximum rank of the tensor. The spatial window size is a crucial parameter that can 
influence significantly the computational time since it affects the dimensions of the tensors to be 
completed. There are no known methods in the literature to estimate the optimal rank of each 
tensor. However, this fact does not influence significantly the reconstruction quality as long as 
the maximum rank is set to a value comparable to the largest fraction of the energy recalled by 
the approximating tensor. In all our experiments, it was enough to choose the maximum rank of 
the approximating tensor equal to half of the maximum rank of the tensor of observations.

It is important to notice that the curvature of the events has not affected the quality of 
the reconstruction, thus demonstrating empirically that the proposed method turns out to be 
independent to the shape of the events. This appears to be an important advantage with respect 
to Spitz-like methods or algorithms based on local transform like seislet or curvelet, requiring 
proper geometrical assumptions.

Similarly to all low-rank tensor completion methods, the interpolation algorithm proposed 
in this paper cannot handle spatially aliased data, but only dense data in a regular grid with 
irregularly missing traces.

Conclusions. In this work we have extended the greedy Orthogonal Matching Pursuit 
algorithm to the multidimensional case, making making it applicable to low-rank tensor 
completion problem. 

We have introduced a new method for reconstructing and interpolating missing traces in 3D 
datasets.

The algorithm operates in frequency-space domain, solving, for each temporal frequency, 
instances of the low-rank Hankel completion problem by the proposed OR1TP greedy algorithm. 
At each iteration this algorithm searches for a rank-one tensor approximation of the residual, 
making the method efficient in terms of time and solution quality.

Synthetic data extracted from the synthetic SEG Advanced Modeling Program (SEAM) 
dataset, was used to prove the ability of the proposed method to recover missing traces in a 3D 
irregularly sampled dataset. Since there are no assumptions about the data, the algorithm turns 
out to be robust with respect to the shape of the events, obtaining good results both in case of 
linear and curved events.
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