

Studio delle Proprietà Geotecniche e del Comportamento Dinamico dell'Alta Valle del Crati nell'Area Urbana di Cosenza

Maurizio Piersanti¹, A. Caserta², G. Galli¹, G. Carlucci¹, G. Della Monica¹

¹ Università degli Studi RomaTre, Dipartimento di Scienze, Sez. Scienze Geologiche ² Istituto Nazionale di Geofisica e Vulcanologia

Progetto Pon – *MASSIMO* (Monitoraggio in Area Sismica di SIstemi MOnumentali)

The *MASSIMO* project has the purpose to study and monitor the response of different types of constructions to seismic stress by different approaches

- Analysis of the seismogenetic sources;
- The surface geology, the topographic characteristics, the elastic properties of soils in relation to the monument architectural and static preservation;
- Monitoring and early warning products by using remotely sensed data (SAR and optical data);
- Earth monitoring products through aeromagnetic surveys;
- Monuments surveying (screening) with proximal remote sensing instruments (laser scanner, thermal camera, sclerometer, georadar, sonic instruments, flat jack testing)

Geological Setting of the Study Area

Geological evolution of the Crati Basin:

- Metamorphic Bedrock
- Marine sediments on metamorphic bedrock
- Tectonics
- Fluvial erosion

CASSA DEL MEZZOGIORNO (1958-1962) Carta geologica della Calabria, scala 1:25.000

HV Crati Basin

All the sites were studied using seismic noise array analisis (2D-1D arrays) in order to obtain a shear-wave velocity profiles

Results from seismic noise measurements: Bedrock Deepening

sands

alluvial deposits

clays

LEGEND

to agree with HV picks at 0.4 Hz and 0.3 Hz, respectively

HV Test Site Area

Geological Model of the Test Site Area

Bedrock Deepening

Testing Liquefaction Risk

Fill

Fill

_

Alluvial

deposits

Gravels

Alluvial

deposits

Fill

-

Fill

Alluvial

deposits

_

Alluvial

deposits

Simplified procedure by *Andrus&Stokoee (2001)* was applied for preliminary evaluation of liquefaction risk for all the study sites:

CSR: Cyclic Stress Ratio CRR: Cyclic Resistance Ratio

[📥] Acquifer level

Site S5: RC and TTC Tests

1D-Model: Site S5

Decay law

٠

Evaluate the seismic response of the study area

Three synthetic reference earthquakes were applied to the metamorphic bedrock (*sbg*) as seismic input:

- Ms = 7.0 with epicentral distance of 5.3 km , PGA of 0.46g,
- Ms = 6.0 with epicentral distance of 0.71 km PGA of 0.31g;
- Ms = 5.0 with epicentral distance of 18 km, PGA of 0.053g.

TIBERTI M.M., et al. (Monitoraggio in Area Sismica di Sistemi Monumentali), Unità di Ricerca Analisi delle sorgenti sismogenetiche, *Rapporto tecnico sugli stati d'avanzamento intermedi* (n.3 dal 01/06/2013 al 30/11/2013.

level	group	lithology	thickness (m)	Vs (m/s)	density (kg/m³)	Damping (%)
I	F	fill	5	300	1800	5
II	А	alluvia	8	460	1850	5
Ш	SC	silts and clays	17	350	1800	5
IV	SCS	silty- clayed sands	40	540	1850	1
V	S1	sands	50	620	1900	1
VI	S2	sands	90	920	1900	1
VII	sbg	altered bedrock	30	1400	2300	0.4
VII	sbg	bedrock	Half-space	2490	2400	0.4

1D-Model: Results

Vertical deformation profiles versus depth

Amplification functions: comparison between HV curves from seismic noise.

Conclusive Remarks

- 1. Geological reconstruction of the trend of the metamorphic bedrock in the High Crati Valley (seismic noise analysis, boreholes, lab Tests);
- 2. Testing Liquefaction Risk;
- 3. 1D-Model

Outlooks

Installation of permanent sensors inside the Test Site and down to the borehole depth to compare theoretical models

