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Topographic effect. In the present work, the topographic effect was investigated selecting 
three basic 2-D geometries and using the feasibility of the spectral-element method (SEM; as 
implemented in the specfem2d code). The 2-D geometries were a triangle, an half-circle and 
a slope. 2-D models (P-SV waves) considering a real topography (Mount Ocre in L’Aquila 
district) were also performed, varying the velocities and the number of nearby topographic 
peaks.

Indeed it is known that jointly with local soil condition, geometrical morphological 
irregularities (slope, ridge, canyon, cliff, etc.) can amplify the seismic ground motion during 
earthquakes. Topographic site effects depends strongly on the geometry, on input wave 
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and location of receivers (Paolucci et al., 2002; Pagliaroli, 2006; Hailemikael, 2010 for an 
overview). Topographic effect on rock sites is difficult to decouple from other amplification 
effects, such as surface layering/weathering, cracking of the bedrock, presence of faults, and 
directivity of the source. For these reasons, seismic and geological experiments at topographic 
sites are important because can provide information on the local velocity structure. 

Numerical simulations available in literature agree in showing complex amplification/
deamplification patterns, caused by interaction of elastic waves with the surface curvature. 
The maximum level of amplification occurs when the incident wavelength is comparable to the 
horizontal dimension of the topographic irregularities. As first approximation, the amplification 
increases as the average slope of the modeled geometry becomes steeper; for incidence not 
vertical, the area of largest amplification shifts in opposite direction with comparison to the 
propagation direction. 

Experimental studies on topographic sites are mainly based on analysis of earthquake and 
noise data collected by several receivers, aimed at following ground-motion variation along the 
topography. The methods of analysis include mostly standard spectral ratio using a reference-
site (SSR), single-station method (horizontal-to-vertical spectral ratio, HVSR), polarization and 
array analysis (Spudich et al., 1986 among many others). Topographic amplification is often 
associated to a ground-motion polarization, observed both on noise and earthquake recordings 
(Marzorati et al., 2011; Burjánek et al. 2012a, 2012b; Pischiutta et al., 2013). Although the cause 
of polarization is still debated, largest amplification seems to appear in transverse direction to 
the main topography elongation (see also the recent NERA-JRA1 project, WP11, Waveform 
modeling and site coefficients for basin response and topography, Responsible activity leader 
P.Y. Bard, ftp://www.orfeus-eu.org/pub/NERA/Deliverables/).

The amplification caused by topography is usually expressed by the topographic aggravation 
factor (TAF) in the time or frequency domain. TAF is defined as the ratio between some ground 
motion parameters (PGA, PGV, PGD, Fourier amplitude spectra, response acceleration spectra 
etc) of a receiver along the topographic profile and the same parameter measured at an “ideal” 
free-field site. TAF is equivalently expressed as the ratio between ground motion amplification 
(X) related to 2-D (and/or 3-D) effects, and the stratigraphic amplification at the same site 
related to 1-D effects:

TAF=X(2-D)/X(1-D)

Numerical and experimental studies indicate the topographic effect as depending on 
the frequency, but European seismic design code (EC8; CEN2008) provides a topographic 
coefficient (St) frequency-independent. St is only depending from the steepness of the slope 
and the geometry of the topographic sites. The same approach follows the Italian building code 
(NTC08), which takes into account four classes of topographic categories (T1, T2, T3 and T4) 
with St ranging from 1 to 1.4; design elastic spectra are uniformly multiplied by St coefficient 
to include the topographic effect. 

2-D SEM Modeling of “basic geometries”. The spectral-element method (SEM) (as 
implemented in the specfem2d code https://geodynamics.org/cig/software/specfem2d/; 
Komatitsch and Vilotte, 1998; Chaljub et al., 2007) was used for studying the effect of three 
basic 2-D geometries. The specific of the SEM is in the combined use of high-order Legendre 
polynomials and of the Gauss-Lobatto-Legendre (GLL) quadrature rule to evaluate the integrals 
within the weak (or variational) formulation of the equation of motion (see Fichtner 2011 for 
an extensive overview).

P-SV models were computed using the following irregular geometries: an half-circular hill 
(diameter 600 m), a triangular ridge (with dimension 600·300 m for base and height, respectively), 
and a slope with dip of 45° (dimension 300·300 m for base and height, respectively). 

The 2-D models were subjected to a vertical incidence of planar waves (Fig. 1); the seismic 
input is a Ricker pulse with a central frequency of 5 Hz exciting the model approximately from 
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1 to 10 Hz. P- and S- input polarizations were kept separately; first I ran a modeling with a 
S- source input polarization, then I repeated the computation using a P- source polarization.
The output synthetics computed along the surface contain both the polarization (P- and S- 
waves) due to the interferences between input pulse and waves diffracted from the irregular
geometries.

I used the internal mesher of specfem2d respecting the time and spatial discretization rules, 
obtaining 270000 reference rectangular elements and 4324801 grid points for each single model 
mesh. The left, right and bottom sides of each model were absorbing boundaries using on the 
whole about 6000 PML (Perfectly Matched Layers) spectral elements, with mean thickness 
of the absorbing layer around 30 m. Accordingly, the spurious waves generated from the 
boundaries show negligible energy. The compressional (Vp) and shear-wave velocity (Vs) of 
the models were fixed to 2000 and 1000 m/s, respectively. The quality factors Q for P- and 
S- waves were assumed to be 200 (damping of 0.25%) and 100 (damping of 0.5%), following
the usual (velocity/10) rule of thumb. The density was fixed to 2 g/cm3 and the Poisson’s ratio
was 0.33. The computational dimension of each model was 9000·2000 m (x and z direction,
respectively). The receivers were in number of 250 and were situated along the uppermost
surface, with a spacing between adjacent receivers of about 12 m.

The snapshots at different time steps (Fig. 1) and the stack of the signal traces show clearly 
the effect of irregular geometries on the seismic waves. The half-circle, the slope and the triangle 
distort the planar input, acting as diffractors of energy and generating waves diffracted from 
the geometrical irregularities propagating along the surface. On the left- and right- part from 
the basic geometries, the waves travel symmetrically along the flat surface. The symmetry of 

Fig. 1 – Basic geometries used in the 2-D P-SV modeling: half-circle, slope and triangle. A planar up-going and down-
going Ricker wave is propagating into the model (specfem2d tool). Red and blue colors indicate the negative and 
positive pulse of seismic wave, respectively. The plot refers to S source polarization, and the snapshots correspond to 
a time step of 1.5 sec after the beginning of the simulation.
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the waves propagation is lost for the slope geometry (Fig. 1); the later arrivals on the right- part 
of the model (at higher elevation) show larger amplification rather than the left- part (at lower 
elevation). 

The synthetic signals have been used to compute the standard spectral ratio (SSR), choosing 
as reference site the first receiver (number #1 located at x progressive of 1000 m) situated on 
the left part of the model. The output signal at each receiver was decimated (downsampling 
at 100 Hz with an antialiasing filter) and processed by means of a discrete Fourier Transform 
after removing the mean. The Fourier amplitude spectra (FAS) were subjected to a smoothing 
arithmetic algorithm. Finally for homologous components, the ratio of the FAS of the signal at 
each receiver over the FAS of the reference receiver was computed. 

SSR for the x and z component is shown in Fig. 2 (left panel) indicating a complex pattern 
with alternate multitudes of amplification and deamplification branches. The maximum 

Fig. 2 – Left panel) SSR computed on synthetics for the half-circle, triangle and slope geometry. The plot refers to x 
component in case of S input polarization. The color scale is proportional to the SSR amplitude. Right panel) HVSR 
computed on synthetics for the half-circle, triangle and slope geometry. The color scale is proportional to the HVSR 
amplitude. HVSR was computed as (H/Href)/(V/Vref); see text.
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amplification level of SSR is about 2. For 
vertical incidence of planar waves, the half-
circle and the triangle show obviously a 
symmetric behavior, even if differences in 
the occurrence of maxima and minima of 
SSR can be observed between the half-circle 
and the triangle. As also shown by the time 
series, the slope-like shape displays larger 
SSR amplification in the right part of the 
model settled at higher elevation, whereas 
deamplified SSR values (blue color in Fig. 
2) are evident at the midpoint of the x-axis 
which corresponds to the spatial position of 
the slope. 

The synthetic signals have been also 
used to compute the horizontal-to-vertical 
spectra ratio (HVSR; Fig. 2). Because I kept 
separated the P- and S- polarization of the 
seismic input, the HVSR was computed as 
double ratio (H/Href)/(V/Vref); the term 
H/Href is the SSR in case of x component 
and S- input polarization, and the term 
V/Vref is the SSR computed on z component 
for P- input polarization. Fig. 2 (right panel) 
indicates a different pattern for the three 
geometries. The HVSR of the half-circle 
shows, in proximity of the uppermost vertex, 
strong resonance at about 2.5 and 6 Hz with 
amplitudes around 4. The HVSR of the 
triangle shows deamplification at the vertex 
position. Narrow patterns of amplification 
and deamplification start from the flank of 
the triangular ridge up to the flat part of the 
model. The HVSR of the slope still shows 
larger amplification in the right part of the 
model located at higher elevation. The 
maximum levels of HVSR value are 4.5 for 
the half-circle and the triangle, and 2.2 for 
the slope (Fig. 2 right panel).

The output synthetics are also used to provide insights on the topographic aggravation factor 
(TAF). According to the previous definition, the comparison between peak ground displacement 
(PGD) measured at a target receiver and PGD measured at an “ideal” site not affected by 
topography can be related to TAF. The distribution of PGD computed from synthetics along 
the topographic profile is illustrated in Fig. 3, where the PGD minima of the three geometries 
were normalized to 1. The receiver number #1 (placed at a progressive x of 1000 m) is accepted 
as “ideal” free-field site. The distributions of peak ground velocity and acceleration (PGV and 
PGA) were also computed after single (or double) differential of the displacement time-series, 
obtaining very similar trend to the PGD one. 

Fig. 3 shows that the increase (or decrease) of PGD is strongly depending by the geometrical 
shapes and source polarization. For x component and S- source polarization (top panel of Fig. 
3), the PGD reaches the same level of minimum (with respect to receiver number #1) for all the 

Fig. 3 – Normalized PGD along the surface of the three 
geometries. Red, green and black curves show the slope, 
the triangle and the half-circle (bottom panel). Top panel 
shows the PGD trend for x component and S input 
polarization; middle panel shows the PGD trend for z 
component and P input polarization.
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three modeled shapes. The plateau value decreases from a value of 2.2 up to 1 (approximately at 
the midpoint of the geometries). The PGD peak is largest for the half-circle (black curve in Fig. 
3 top panel) with the maximum amplification occurring exactly at its uppermost vertex, whereas 
the triangle is mostly characterized by deamplification of the ground motion (green curve in Fig 
3 top panel). The slope geometry (red curve in Fig. 3 top panel), in case of x component and S- 
source polarization, shows a PGD increase (from 2.2 in the plateau part to 2.9) with the largest 
amplification occurring in a narrow zone immediately after the slope (between 2800 and 2900 
m), similar to a “damage belt zone” effect. 

For z component and P- source polarization (middle panel of Fig. 3), the largest PGD peak 
is observed for the uppermost vertex of the triangle (green curve in Fig. 3 middle panel) with 
value from 1.4 (plateau part of the figure) to 1.9 (vertex). The uppermost vertex of the half-
circle (black curve) in this case does not modify the PGD with respect to the plateau value, 
whereas rapid variations of amplification and deamplification appear near the base of the half-
circle geometry. The slope (red curve in Fig. 3 middle panel) shows lower deviation between 
PGD maxima and PGD minima than the other geometries.

The effect of the topographic shapes on PGD, as observed in the Fig. 3 for both the 
polarization, starts from the progressive 2200 up to 3200 m (x axis), i.e. 200 m before and after 
the irregular shapes. This measurement (200 m) is comparable to the half-width (300 m) of the 
modeled shapes, therefore their effect seems to spatially extend for a length of the same order 
of the half-width of the topographical irregularities.

Case-study: Mount Ocre. After the 2-D simulation of P-SV waves propagating in simple 
irregular shapes, the realistic topographic profile of Mount Ocre (courtesy of Antonio Avallone) 
was modeled. Mount Ocre (about 9 km in SE direction from L’Aquila downtown) is interesting 
because it is available at this site a record of the Mw 6.1 L’Aquila mainshock (on April 6, 2009) 
acquired by a high-rate GPS station (site named CADO with a 10 Hz as sampling rate; Avallone 
et al., 2014). CADO is on the crest of a narrow ridge, which is elongated in the NW-SE direction 
bounding the Aterno river valley. Following Avallone et al. (2014), the vertical component of 
L’Aquila mainshock recorded at CADO shows a maximum subsidence of about 18 cm, and 
the horizontal components show a strong nearly-harmonic high-amplitude 1 Hz phase. This 
harmonic phase shows a maximum peak-to-peak amplitude of 36.4 cm in the east component 
and 22.6 cm in the north component. The particle motion in the horizontal plane results in a 
maximum displacement of 42.8 cm in the N+60° clockwise direction, approximately normal 
both to the fault strike of the region and to the ridge elongation. The horizontal polarization at 1 
Hz is assumed to be a site property because is independent from the nature of the source signal. 
Indeed using directional H/V ratios, the same polarization resulting from the mainshock was 
observed from noise measurements surrounding CADO, and also from local small-magnitude 
earthquakes recorded by a co-located seismic station (Avallone et al., 2014). The outcropping 
rock at CADO is fractured and weathered limestone, but the observed strong site effect at 1 Hz 
is not consistent with the results of array experiments conducted within the aim of the NERA 
Project nearby CADO (Rovelli et al., 2012).

The possible role of the topography at CADO has been investigated using a 2-D model with 
the following parameters: Vs=1000 and Vp=2000 m/s; Qs=100 and Qp=200; mass density fixed 
to 2.5 g/cm3. For simplicity and because the analysis is focused on the amplification induced by 
the topographic profile, the relief is modeled as having uniform rock properties and the adjacent 
Aterno basin is not included in the model. The ground motion amplification at Mount Ocre was 
estimated using the SSR approach for synthetic waveforms with respect to a reference site. The 
reference site was the synthetic seismogram of the same model without topography. A P-SV 
computation, using a different code than specfem2D, was also performed at this site by means 
of a finite-element approach in time-domain (Caserta 1998; Caserta et al. 2002) which adopts 
a triangle mesh generator (http://www.cs.cmu.edu/~quake/triangle.html). However the SSR 
results of the two codes (specfem2d and Caserta code) were very similar up to 8 Hz. 
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SSRs at Mount Ocre show spectral behavior similar to the one discussed previously for the 
basic geometries, with multiple alternation of amplification and deamplification patterns. In 
proximity of the crest where CADO site is located, the 2-D simulation shows ground motion 
amplification at high frequency ( f > 3 Hz) and the amplitude is smaller than a factor of 2 
around 1 Hz. Although the modelling is very simple (2-D and uniform rock), the numerical 
predictions suggest that the peculiar high-amplitude wave train observed at 1 Hz cannot be 
reproduced by lateral variations of the topography. This is true also considering the effect of 
nearby topographic peaks assuming a longer profile in the x direction, or reducing the velocity 
values by a factor of 2. SSRs computed on synthetics still indicate that no realistic velocities 
give amplifications comparable to the observations when uniform rock models are adopted. 
Avallone et al. (2014) commented the amplification mechanism of CADO as related to wave-
guide amplification phenomena of trapped waves within a low-velocity fault zone (LVFZ). The 
horizontal extension of the fault zone in proximity of CADO was estimated by these authors 
around 650 m, and the velocity reduction within the LVFZ was around 40% with respect to the 
surrounding quarter-spaces. 

Conclusion. Topographic effects have been investigated from spectral-element P-SV 
simulations considering three basic geometries (Fig. 1). The geometrical irregularities, in case 
of vertically incident plane waves, generate lateral propagating surface pulses and distinct 
patterns of amplification and deamplification, with an amplitude level mostly below 2 for SSR 
or below 4.5 for HVSR (Fig. 2). The pattern of amplification/deamplification is different for the 
horizontal and vertical components, depending on the shapes of the modeled irregularities and 
on polarization of the seismic input. 

The output synthetics allow also to provide insights on the topographic aggravation factor 
(TAF), which is computed as the ratio of peak ground displacements (PGD) using an ideal 
reference site. The TAF pattern clearly illustrates the alternate position of amplified and 
deamplified values along the profile (Fig. 3). The numerical simulations show that the effect on 
the PGD distribution spatially extends before and after the position of the basic geometries, for 
a length of the same order of the half-width of the topographical irregularities (Fig. 3). Further 
in case of the geometrical slope, the largest amplitudes of late pulse are found in the part of the 
model characterized by higher elevation. 

Assuming the real topography of Mount Ocre, the polarized 1 Hz amplification cannot 
reproduced by simple models with homogeneous velocities and taking into account only the 
topography. As discussed in Avallone et al. (2014), the observed amplification is likely related 
to a fault-zone effect, indicating that more advanced simulations are necessary in understating 
topographic effects on rock sites. 
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