

Results of PERLA (Paraná-Etendeka Regional Lithospheric Analysis) on gravity and petrographic modeling of the upper mantle

Patrizia Mariani and Carla Braitenberg Department of Mathematics and Geosciences, University of Trieste

Paraná-Etendeka Regional Lithospheric Analysis

Motivation

- Studying lithosphere after the breakup of W-Gondwana
- Looking for heterogeneous lithosphere explaining asymmetric volcanic effusion Age LIPs: 50-150Ma; of Paraná and Etendeka (South America and Africa).
- Tholeiitic basalt + alkaline + alkalinecarbonatitic complex in P-E ignous province with a large span of age (250-50 Ma) (Comin-Chiaramonti et al., 2007)

>150Ma

Methodology

Tzz RESIDUAL signal (CRUSTAL LAYERS)

Study of the Upper mantle

Information about the mantle are given by:

- □ 1) Geophysical studies
- 2) Mantle xenolites
- 3) Ophiolites: uplifted oceanic
 crust + upper mantle

Residual modeling

FROM CRUST TO MANTLE \rightarrow Mantle modeling

- Density variation driven by:
- Petrological composition
- □ T-P condition with depth

Model tested:

- Monomineralogic rocks
- Mantle Petrological models
- Linear Temperature
 Gradient (LGT) on
 peridotites, age
 dependent

R

The behavior of Fe: the increase of density and the decrease in Vp and Vs velocity is evident

Fe Mg

- ✤ Main minerals occurring in eclogite
- High density is possible: underplating could explain the positive anomaly across the southern African margin

Mantle Petrological classification

Age influence in composition (Artemieva 2011) Proportion of lead minerals

Olivine/Ortopiroxene/Clinopiroxine/Garnet

LTG: P-wave Velocity profiles (SAM-ETAN)

Discussion

- Mineralogical composition have to be used to calculate seismic velocity and density
- Temperature and pressure affect Vp, ρ values significantly

Conclusion

- P-E can be well studied with GOCE products: Angola and Namibia coastline has equal gravity behavior
- Hard to localize the anomaly in the crust or in the mantle: tomography could be more useful
- The behavior of rock minerals is essential to join gravimetry and tomographic methodologies
- Now: Vp in P-E has similar values, while under SAM craton and ETAN craton values are different metasomatism explaining lithosphere of P-E

Outlook

- Improve and Refine the petrophysical behavior in the upper mantle to better constrain the lithosphere in P-E
- Make inversion
 program on complete
 Tensor

		ROCK SAMPLES	MEAN
Regional Metamorphic		ECLOGITE	3.275
Plutonic (Ultrafemic)	4	PERIDOTITE WET	3.255
	D	PERIDOTITE DRY	3.19
Hypabyssal (femic)	E	DIABASE (from SILL)	2.795
Volcanic rocks (femic)	N	THOLEIITIC BASALT (hTi)	2.72
	S		
Metamorphic low degree (metasomatism)	1	SERPENTINITE	2.63
	Т		
Volcanic (felsic)	Y	IGNIMBRITE	2.28

Thank you for your attention

