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Introduction. Reservoir characterization plays an essential role in integrated exploration and 
reservoir studies, as it provides an optimal understanding of the reservoir internal architecture 
and properties. In reservoir characterization studies seismic reflection data are often used to 
derive petrophysical rock properties (water saturation, porosity, shale content) from elastic 
parameters (seismic velocities, rock density or impedances). The rock-physics model is the link 
between elastic properties and such petrophysical parameters and it can be based on theoretical 
rock-physics equations or on empirical set of equations derived from available information 
(well-log or core data) and valid for the specific case of interest.

The inverse problem of estimating petrophysical properties from seismic reflection data is 
multidimensional, ill posed and strongly affected by noise and measurement errors. Therefore, 
the statistical approach to seismic reservoir characterization has become the most popular 
approach. It is able to take into account the uncertainties associated with the simplified rock-
physics model, the error in the seismic data, and the natural variability of the petrophysical 
properties in the subsurface. The goal of this approach is to predict the probability of 
petrophysical variables when seismic velocities or impedances and density are assigned, and 
to capture the heterogeneity and complexity of the rocks and the uncertainty associated with 
the rock-physics model. For many examples of applications of this approach to reservoir 
characterization studies constrained by seismic and well-log data, see for example Avseth et 
al. (2005). 

In this paper, we apply a two-step procedure to seismic reservoir characterization. The first 
step is a Bayesian linearized amplitude versus angle inversion (AVA) in which, on the line of 
Buland and Omre (2003) and Chiappa and Mazzotti (2009), we derive the elastic properties 
of the subsurface and their associated uncertainties assuming Gaussian-distributed errors 
and Gaussian-distributed elastic characteristics. The second step is a petrophysical inversion 
that uses the outcomes of AVA inversion, the previously defined rock-physics model, their 
associated uncertainties and the prior distribution of the petrophysical variables, to derive 
the probability distributions of the petrophysical properties in the target zone. The derivation 
and the calibration of different rock-physics models is the topic of the companion paper titled 
“Seismic reservoir characterization in offshore Nile Delta. Part I: Comparing different methods 
to derive a reliable rock-physics model”. In that paper the empirical, linear, rock-physics model 
derived with a multilinear stepwise regression (named SR in the companion paper) and the 
theoretical rock-physics model (named TRPM in the companion paper) demonstrated to be the 
most reliable in predicting the elastic characteristics from the petrophysical properties. Then, 
the two rock-physics models are applied in the petrophysical inversion described here. In the 
context of petrophysical inversion, the main difference of applying a linear or a non-linear rock-
physics model lies in the fact that the former allows the joint distribution of petrophysical and 
elastic properties to be analytically computed, while the latter requires a Monte Carlo simulation 
to derive such joint distribution. 

We start with a brief theoretical description of the method and with a synthetic example 
based on actual well-log measurements. This test aims to demonstrate the applicability of the 
inversion method and to illustrate and compare the different results obtained by considering 
the empirical and the theoretical rock-physics models. Moreover, this synthetic test allows us 
to check the applicability and the reliability of the two rock-physics models in the specific case 
under examination. Then, a field case inversion is discussed. This inversion is performed for a 
single CMP location where well-control is available to validate the results.
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The method. In the following discussion we will use m to indicate the elastic properties, 
typically P and S-impedance (Ip and Is, respectively) and density, R to indicate the petrophysical 
properties, such as water saturation (Sw), porosity (φ) and shaliness (Sh), whereas dobs 
indicates the observed seismic data (typically the measured AVA responses). The method we 
use is a two-step procedure: a Bayesian linearized AVA inversion followed by a probabilistic 
petrophysical inversion. This petrophysical inversion makes use of the a-priori distribution of 
the petrophysical properties p(R) derived on the basis of well-log data, of the previously defined 
rock-physics model and of the results of AVA inversion to derive the probabilistic distribution 
of the petrophysical properties in the subsurface.

The first step of the petrophysical-seismic inversion is the Bayesian AVA inversion that 
jointly estimates the posterior distributions of the elastic properties in the subsurface by making 
use of a reformulation of the linear approximation of the Zoeppritz equation derived by Aki and 
Richards (1980). In particular, we parameterize the inversion in terms of P and S-impedance (Ip 
and Is, respectively) and density. In terms of impedances, the P-wave reflection coefficient Rpp 
as a function of the reflection angle (θ) can be written as follows:

(1)

where Ip—, Is— and ρ— are, respectively, the averages of impedances and density at the reflecting 
interface, whereas ΔIp, ΔIs and Δρ are the corresponding contrasts. However, density 
estimates are not used in the petrophysical inversion since they are obviously correlated with 
the impedances ones and because the linear AVA inversion cannot retrieve reliable information 
about density with realistic noise levels (Buland and Omre, 2003). Following Stolt and Weglein 
(1985), the single-interface reflection coefficient in Eq. 1 can be easily extended to a time-
continuous reflectivity function. The elastic properties estimated by Bayesian AVA inversion 
are delivered according to the following posterior probability distribution:

(2)
where: G indicates the Gaussian distribution where the posterior expectation and the covariance 
are equal to μm|dobs and Σm|dobs, respectively. The a-priori distributions and the vertical correlation 
of the elastic properties, needed to derive the posterior distribution in Eq. 2, can be determined 
from available well-log data. For full details about the Bayesian linearized AVA inversion see 
Buland and Omre (2003). 

For what concerns the petrophysical inversion, we apply the method proposed by Grana 
and Della Rossa (2010) and briefly summarized in the following. Considering all variables as 
random vectors, we can write the rock-physics model (fRPM) as:

(3)

where: ε is the random error that describes the accuracy of the rock-physics model and can 
be determined by comparing the available well-log data with the predicted data. For the prior 
distribution of the petrophysical properties p(R) we assume a multivariate Gaussian mixture 
(GM) that is a linear combination of Gaussian distributions:

(4)

where: Nc indicate the number of components of the mixture and ak are the weights associated 

with each component (with ). Generally, each component is a specific litho-fluid 
class previously determined from available log data and from the geological knowledge of the 
investigated area. In this work, we consider three litho-fluid classes that are gas-sand, brine-
sand and shale. The technique we adopt, to estimate the parameters of the Gaussian components 
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and the weights of the mixture, is the expectation maximization algorithm (Hastie et al., 2005). 
This Gaussian mixture model allows us to describe the multimodality and the correlation that 
often characterize the distribution of the petrophysical properties in the subsurface.

If we assume that ε is Gaussian with zero mean and covariance Σε, the conditional probability 
p(m|R) can be expressed as:

(5)
where: Σε can be estimated by comparing actual and predicted well-log data and is assumed 
independent from R and only related to ε. Note that this formulation allows us to account for 
uncertainties associated with the rock-physics model predictions that are expressed by ε and 
Σε.

The joint distribution of the elastic and the petrophysical properties is again a Gaussian 
mixture:

(6)

If the rock-physics model fRPM is linear, this joint distribution can be derived analytically 
from the prior distribution p(R). Conversely, if fRPM is not linear the joint distribution p(m,R) can 
be obtained from a semi-analytical approach that makes use of Monte Carlo samples. This last 
approach applies the expectation maximization algorithm to Monte Carlo samples to compute 
the characteristics of the joint distribution (see Grana and Della Rossa, 2010, for full details). 
Since the joint distribution is a Gaussian mixture, the conditional distribution p(R|m) is again a 
Gaussian mixture and can be written as follows:

(7)

in which  and  are analytically computed from the joint distribution p(m,R), from 
the prior model p(R) and from the results (m) of Bayesian AVA inversion:

(8)
and

(9)

The weights ck in the conditional GM distribution p(R|m) can be computed as follows:

(10)

To compute the final conditional probability p(R|dobs), which expresses the probability of 
petrophysical variables conditioned by seismic data, we need to propagate the uncertainties that 
characterize the results of the Bayesian AVA inversion into the conditional probability p(R|m). 
To this end the Chapman-Kolmogorov equation can be used (Papoulis, 1984):

(11)

This conditional probability is the final result of the petrophysical inversion conditioned by 
seismic data.

Results. To define the number of components of the a-priori Gaussian mixture distribution 
of the petrophysical properties (p(R); Eq. 4) we consider three different litho-fluid facies that 
are shale, brine sand and gas sands. These facies are defined on the basis of available well-
log data and geological knowledge of the investigated area. This trivariate Gaussian mixture 
allows us to account for correlations observed between petrophysical variables in each litho-
fluid class. The parameters that define this GM distribution were obtained applying the 
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expectation maximization algorithm. Fig. 1 represents the prior Gaussian mixture distribution 
of water saturation, porosity and shaliness for the three facies. In Fig. 1a we represent the prior 
distribution projected onto the Sw-φ plane, together with the associated two marginal prior 
distributions (Mpdf) computed along the Sw and φ directions. As expected, the shale correspond 
to high Sw values and low porosity, whereas both brine sands and gas sands are characterized 
by higher porosity, with the gas sands at lower water saturation values than brine sands. Fig. 
1b shows the prior distribution of the petrophysical properties projected onto the Sw-Sh plane. 
Similarly to Fig. 1a, the marginal distributions are also represented. As expected, the shales are 
characterized by higher shaliness values with respect to brine sands and gas sands.

To test the applicability of the petrophysical-seismic inversion and to check the reliability of 
the two considered rock-physics models, we show a synthetic inversion in which actual well-
log measurements, pertaining to a well drilled in the target area, have been used to compute the 
synthetic seismic data. The synthetic data have been computed by means of a 1D convolutional 
forward modeling and using a 50 Hz Ricker wavelet as the source signature. Fig. 2a shows the 
synthetic CMP gather in which the offset has been converted to incident angles, whereas Figs. 
2b, and 2c illustrate the results of the Bayesian AVA inversion. The green arrows in Fig. 2a at 
2.46 s indicate the target gas-sand interval. The decrease of Ip and density and the increase of 
Is that characterize this gas-sand interval generate the typical class III AVA anomaly (Castagna 
and Swann, 1997) clearly visible in the synthetic seismogram. In Fig. 3a the blue curves depict 
the actual well-log data resampled at the seismic sample interval, the red curves illustrate 
the maximum a-posteriori (MAP) solution, and the gray curves are Monte Carlo realizations 
computed from the posterior distribution p(m|dobs) (see Eq. 2). Each Monte Carlo realization 
represents a possible solution. As expected, the uncertainties increase passing from Ip, to Is and 

Fig. 1 – Prior probability distribution of 
the petrophysical variables (φ, Sw and 
Sh) computed taking into account three 
different litho-fluid classes: brine-sand, 
gas-sand and shale. The prior is distributed 
according to a Gaussian mixture model 
that allows us to take into account the 
multimodality and the correlation that 
usually characterize the distribution of the 
petrophysical properties in the subsurface 
(see Eq. 4). a) Prior distribution projected 
onto the Sw-φ plane and the associated 
marginal distributions (Mpdf) computed 
along the Sw and φ directions. b) Same as 
(a) but considering the Sw-Sh plane.
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Fig. 2 – Results of the synthetic inversion based on actual well-log measurements. a) The synthetic CMP, P-impedance, 
S-impedance and density are represented from left to right. For impedances and density the x-axes are represented 
with the same scale to better illustrate the increase of uncertainty that occurs passing from the Ip, to the Is and to the 
density estimates. In blue are represented the true elastic properties, in red the maximum a posteriori (MAP) solution, 
whereas the grey curves show Monte Carlo samples form the posterior probability distribution. The green arrows 
indicate the target gas-sand that generates a class III AVA anomaly in the synthetic seismogram. b) and c) Results of 
the petrophysical inversion that is the posterior conditional probability p(R|dobs) (see Eq. 11). The water saturation, 
porosity and shaliness are represented from left to right, respectively. b) Results obtained applying the theoretical, 
non-linear, rock-physics model. c) Results obtained with the empirical, linear, rock-physics model. 
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to density. However, we note that, although with a different resolution, the predicted elastic 
properties close match the true ones.

Now we move to describe the results of the petrophysical inversion obtained by applying 
both the linear, empirical, rock-physics model and the non-linear, theoretical, rock-physics 
model. The final, multimodal, Gaussian mixture distributions p(R|dobs), derived for both the 
petrophysical inversions are represented in Figs. 2b and 2c. Fig. 2b shows the outcomes of 
the petrophysical inversion in which the theoretical, non-linear, rock-physics model (TPRM in 
the companion paper) has been considered, whereas Fig. 2c shows the results obtained when 
the empirical, linear, model (SR in the companion paper) has been used. In both cases we 
note that, as expected, the water saturation is poorly resolvable in the range 0-95% due to its 
minor influence in the Ip and Is values (although the main gas sand interval at 2.46 s has been 
correctly predicted), whereas the shaliness and, particularly, the porosity are well resolved. 
Comparing the predicted petrophysical properties with the true ones (shown by the dotted 
white lines), we note that, within the resolution of the seismic data, both the theoretical and 
the empirical rock-physics models are able to correctly predict the porosity and the shaliness 
values. In particular, both petrophysical inversions have been able to predict the many porosity 
and shaliness variations that occur between 2.45 and 2.50 s, where a finely layered sand-shale 
sequence occurs. As expected, a lower match between each predicted and true value and a 
higher uncertainty characterize the water saturation estimates. For the water saturation, we also 
note that the theoretical rock-physics model seems to produce a better fit with the true water 
saturation values with respect to the empirical rock-physics model. This fact can be ascribed 
to the difficulty of a linear rock-physics model to takes into account the non-linearity that 
characterizes the influence of the water saturation on the P and S impedances. 

In conclusion, both the outcomes of the empirical, linear, and the theoretical, non-linear, 
rock-physics models show a fair match with the actual well-log measurements. This confirms the 
reliability and the applicability of the two rock-physics models in the petrophysical inversion. 
However, with respect to the analytical rock-physics model the theoretical model is more 
computer demanding as it requires a Monte Carlo simulation to compute the joint probability 
distribution p(m,R). This peculiarity must be taken into account when the petrophysical inversion 
is performed on multiple CMP gathers. 

The discussion about the field data inversion is limited to a single CMP location where a 
well-control is available. This CMP is the nearest to the well that has already been considered 
in the synthetic inversion. The seismic data have been processed paying particular attention at 
preserving the true amplitude of the reflections. However, due to the strong attenuation of high 
frequencies produced by several gas clouds occurring in the shallow layers, these seismic data 
are very poor in high frequencies. Consequently, the dominant frequency, at the depth of the 
target level, is around 15-18 Hz. 

Fig. 3a illustrates the results of the Bayesian AVA inversion for the considered CMP gather. 
In the observed seismic data, despite the very low resolution, a clear class III AVA anomaly 
is visible at the target level (around 2.46 s). In blue are illustrated the true elastic properties 
resampled at the seismic sampling interval, the green lines show the true properties up-scaled 
to the seismic frequency band, the red curves represent the MAP solutions, while the gray 
lines are Monte Carlo realizations derived from the posterior distribution. As observed in the 
previous synthetic example the uncertainties increase passing from the impedances to the 
density estimates. However, the true up-scaled elastic properties (green lines) show a fair match 
with the estimated ones (red lines) and, more importantly, they lie inside the range defined by 
the Monte Carlo realizations. 

Figs. 3b and 3c show the conditional probability distributions of the petrophysical properties 
predicted by using the theoretical, non-linear, and the empirical, linear, rock-physics models, 
respectively. At the low resolution of the seismic data, the differences in the results obtained 
with the two rock-physics models are negligible. Differently, from the previous synthetic test, 
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Fig. 3 – Results of the inversion of field data performed on the CMP location nearest to the well already considered 
in the synthetic inversion. a) The synthetic CMP, P-impedance, S-impedance and density are represented from left to 
right, respectively. For impedances and density the x-axes are represented with the same scale to better illustrate the 
increase of uncertainty that occurs passing from the Ip, to the Is and to the density estimates. In blue are represented 
the true elastic properties resampled at the seismic sampling interval, in red the MAP solution, in green the true 
properties up-scaled to the seismic bandwidth, whereas the grey curves show Monte Carlo realizations form the 
posterior probability distribution. b) and c) Results of the petrophysical inversion that is the posterior conditional 
probability p(R|dobs) (see Eq. 11). The water saturation, porosity and shaliness are represented from left to right, 
respectively. b) Results obtained applying the theoretical, non-linear, rock-physics model. c) Results obtained with 
the empirical, linear, rock-physics model. 
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the low resolution of the seismic data makes a detailed characterization of the petrophysical 
properties in the subsurface impossible. However, despite the low-resolution issue, the 
petrophysical inversion has been able to predict the increase of porosity and the decrease of 
shaliness that occur between 2.45 and 2.50 s where the alternating shale-sand sequence occurs, 
but, differently from the synthetic inversion, this finely layered shale-sand sequence is resolved 
as a unique layer. 

Conclusions. We presented a two-step probabilistic petrophysical inversion applied to 
reservoir characterization in offshore Nile delta. The first step of this procedure is a Bayesian 
linearized AVA inversion that returns the posterior probability distributions of the elastic 
properties (Ip, Is and density) in the subsurface. The second step is a probabilistic petrophysical 
inversion that makes use of the results of the previous AVA inversion, of the prior distribution 
of the petrophysical variables, and of a suitable rock-physics model to determine the posterior 
distribution of the petrophysical properties in the subsurface. This method propagates the 
uncertainties from seismic to petrophysical properties, including the effect of seismic noise 
error, the degree of approximation of the rock-physics model and the uncertainties that affect 
the estimated elastic properties. The Gaussian mixture model approach allows us to take into 
account the multimodality and the correlation that usually characterize the distribution of the 
petrophysical properties in the subsurface. The petrophysical inversion was performed making 
use of two different rock-physics models: a linear model (named SR in the companion paper) 
derived empirically by means of a stepwise regression from the available log data, and a non-
linear model based on theoretical equations (named TRPM in the companion paper). Both 
rock-physics models returned very similar results, thus confirming their reliability and their 
applicability in the specific case under examination. The unique difference lies in the fact that 
the theoretical rock-physics model is more computer demanding as it requires a Monte Carlo 
simulation to compute the joint probability distribution p(m,R). This peculiarity must be taken 
into account when applying the petrophysical inversion on multiple CMP locations.

The inversion of synthetic and field data confirmed the applicability of the proposed 
methodology. Shaliness and, particularly, porosity are the best resolved parameters. Conversely, 
water saturation in the range 0%-95% is poorly resolvable due to its minor influence on the Ip 
and Is values. The field data inversion was performed on a single CMP location where well-
control was available to validate the results. The main limit of the seismic data is the very 
narrow frequency bandwidth that makes them unsuitable for detailed reservoir characterization 
studies. 

The results of the Bayesian linearized AVA inversion have been also used to perform a 
probabilistic litho-fluid facies classification that makes use of Markov-chain models. For the 
lack of space, the outcomes of this classification procedure have not been discussed here.
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