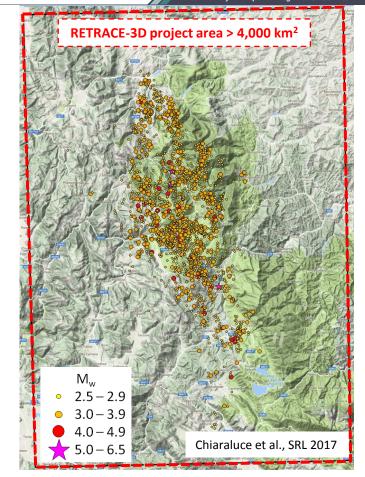
RETRACE-3D

centRal italy EarThquakes integRAted Crustal modEl

Buttinelli M.¹, D'Ambrogi C.², Di Bucci D.³, Scrocca D.⁴ & *RETRACE-3D Working Group* ¹⁻⁵

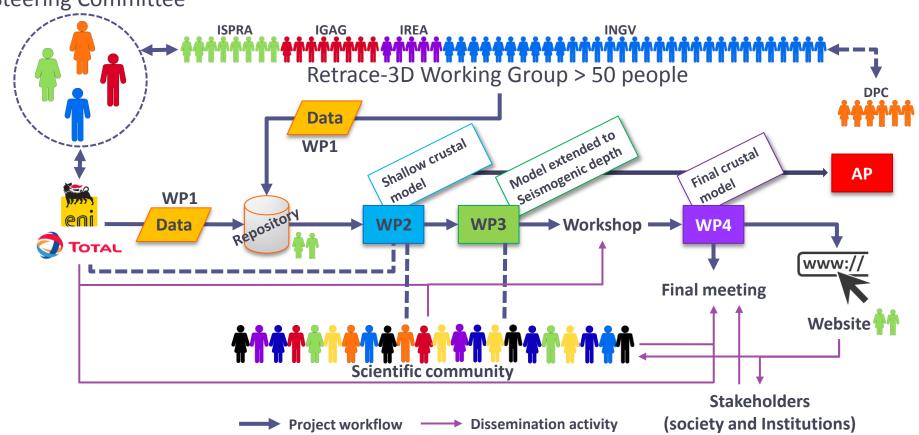

- ¹Istituto Nazionale Geofisica e Vulcanologia, ²Servizio Geologico d'Italia ISPRA,
- ³Dipartimento della Protezione Civile, ^{4/5}Consiglio Nazionale delle Ricerche (IGAG and IREA)

RETRACE-3D is a collaborative project

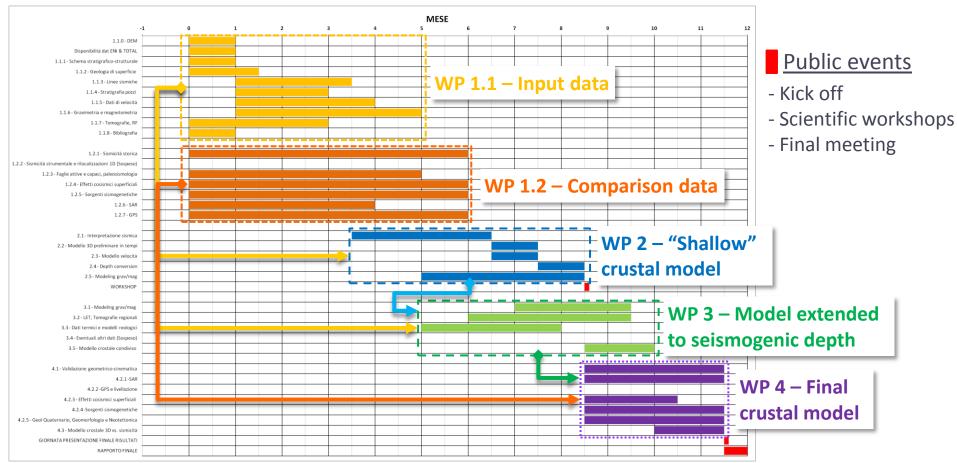
to develop a robust and broad consensus 3D crustal model of the area struck by the Central Italy seismic sequence (2016/2017)

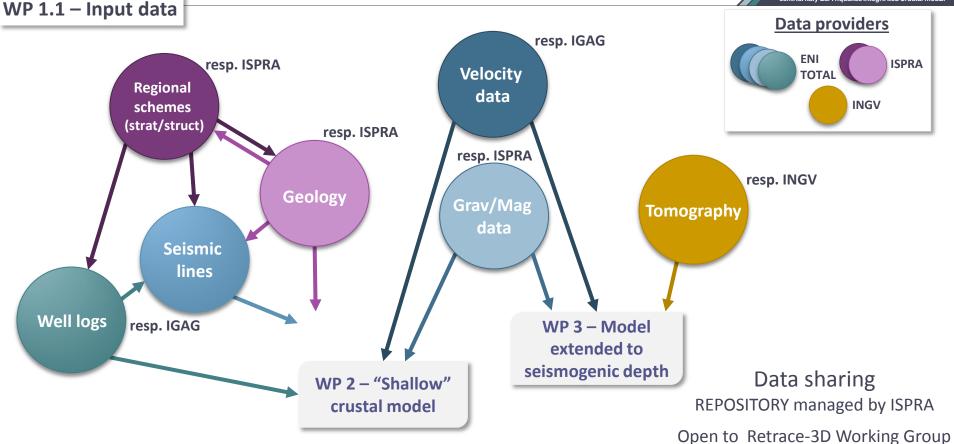
blending in a synergic way the multi-disciplinary skills of CNR (IGAG and IREA), INGV and ISPRA (Servizio Geologico d'Italia) and associated researchers

the coordination has been actively promoted by the National Department of Civil Protection



The main aims of the project are:


- i) to build up a <u>high quality 3D model</u> of the possible seismogenic sources in the crustal volume affected by the seismic sequence;
- ii) to define the 3D subsurface tectonic setting and distribution of the geologic units, which will contribute in their turn to <u>improve the velocity models</u> currently used to locate the seismicity, and to better understand the potential role played by structural features inherited from previous tectonic regimes;
- iii) to develop <u>dynamic models of seismogenic structures through multi-parameter</u> <u>optimization of ground deformations from remote sensing data</u>.

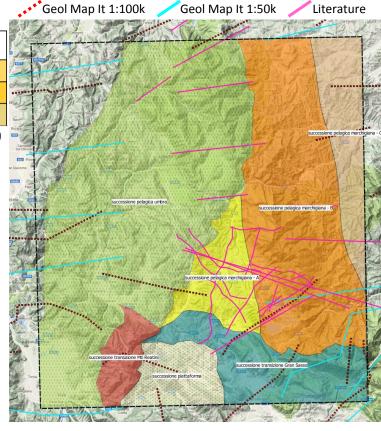


entRal italy EarThquakes integRAted Crustal modEl

Restricted access to confidential data

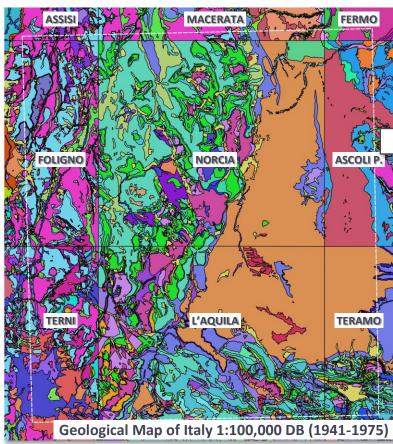
<u>Input data preparation - Harmonizing the contents</u>

Literature, geological maps, deep boreholes

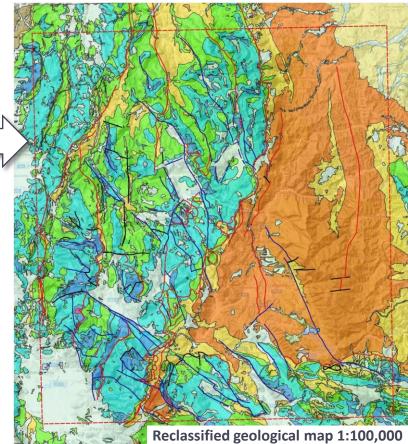

index of georges in app, acceptioned									
Unit code	formations	HORIZON code	Transizione Reatini		Transizione Gran Sasso		Pelagica Umbra		Pelagica Marchigiana
MIO-PL	Laga	—имн—			500			Ì	max 3000-3500
EO-MIO	Marne a Pteropodi	-UNIH-	800		300-800				
	Marne con Cerrogna					ı	250-700	١	250 (nord) –
	Bisciaro						250-700	ı	1000 (sud)
	Scaglia Cinerea							ı	
C-E0	Scaglia (B+R+V)	—VAS —	250-400		200-650		350-600		350-550 (750 Campotosto1)
УC	Marne a Fucoidi	—FUC —	1150-1500		600-1500			Ì	
	Maiolica						500-1200		350
	Diaspri/Filaments	RSN						ı	(550 Varoni 1)
	Marne M.te Serrone							ı	
	Corniola					П		ı	
	Calcare Massiccio	-MAS -	700-1000				700-1000		700-800
TR	Dolomie/Evaporiti	—BUR —			600 (dolomie)		>1400-2000 (Perugia 1 - S.Donato)		>1700 (Burano 1)
	Basamento	-bas -							

Settore A		Settore B	Settore C		
LAG3		500 lobes	600 lobes		
LAG2	300 channels	700-1100 channels 300-1000 lobes	800 lobes		
LAG1	200-400 channels	250-1000 channels 100-1500 lobes	600 lobes		

data from Milli et al., 2009

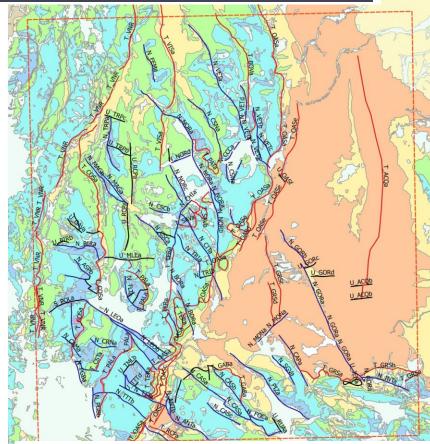

Seismic interpretation

The reference schemes
a common language for a
heterogeneous community


entRal italy EarThquakes integRAted Crustal modEl

<u>Input data preparation – surface geology</u>

Harmonization according to Retrace-3D scheme


Unit code	formations
MIO-PL	Laga
	Marne a Pteropodi
EO-MIO	Marne con Cerrogna
EO-IVIIO	Bisciaro
	Scaglia Cinerea
C-E0	Scaglia (B+R+V)
	Marne a Fucoidi
	Maiolica
J-C	Diaspri/Filaments
	Marne M.te Serrone
	Corniola
	Calcare Massiccio
TR	Dolomie/Evaporiti
	Basamento

RETRACE-3D

ntRal italy EarThquakes integRAted Crustal modE

<u>Input data preparation – Fault systems</u>

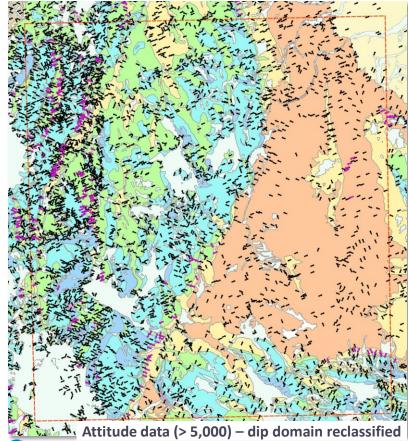
	Fault Syster	n Name		Code		
Acquasanta	3			U_ACQb		
Acquasanta	э	Monte Patino				T PATa
Antrodoco		Monte Rua	U RUAa			
Antrodoco		Monte Tolentino				U TLTc
Aspra		Monte Tole	U TLTb			
Aspra		Monte Tolentino				N TLTa
Aspra		Monteleon	U MLEa			
Aspra		Montereale				N_MONa
Canetra		Norcia				U_NORf
Capitignan	Gorzano	Norcia				N_NORe
Casaline	Gorzano	Norcia				N_NORd
Casaline	Gorzano	Norcia				N_NORc
	Gorzano	Norcia				N_NORb
Casaline	Gran Sasso	Norcia				N_NORa
Cascia	Gran Sasso	Olevano-Antrodoco-Sibillini				U_OASf
Cascia	Gran Sasso	Olevano-Antrodoco-Sibillini			T_OASe	
Cascia	Gran Sasso	Olevano-A	ntrodoco-Si	T_OASd		
Castel Sant Intermesoli		Olevano-Antrodoco-Sibillini				T_OASc
Castellucci Leonessa		Olevano-Antrodoco-Sibillini				T_OASb
Castellucci Leonessa		Olevano-Antrodoco-Sibillini				T_OASa
Castiglione		Palloroso				T_PALa
Chiavano Monte Birbor-		Pizzoli	N_PIZa			
Cima d'Arn	Monte Birbor	Poggio Bustone				N_PGBb
Cittareale Monte Borag		Poggio Bustone				N_PGBa
Cittareale	Monte Bove	Polino				S_POLa
Forcella	Monte Bove	Trinonzo			T RCFa	
Forcella	Monte Carpe	Roccapore				
Monte Ciamb Sa			san Glovan——————————			
Manta Cianto		Savelli Valnerina				
	Monte Corne	Savelli				
	Monte Corno		Vottoro			
Monte Cosce		Terminillet				

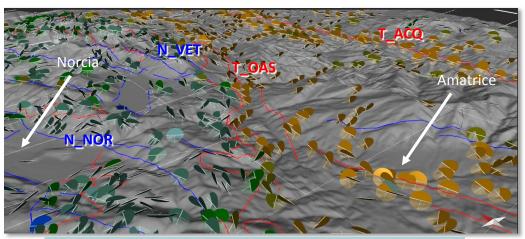
Monte Fema Terminillet

Monte Gabbii Terminillet

Monte Gabbia Terminillet

Monte Gabbia


T_XXXx_00n	thrust
N_XXXx_00n	extensional
S_XXXx_00n	strike slip
U_XXXx_00n	undefined



PGBa
POLa
RCFa
U_TRPC
U_TRPB
N_TRPa
T_VNR
U_VELa
N_VETd
N_VETC
N_VETB
N_VETB
N_VETA
T_VISa



<u>Input data preparation – Geometrical constraints</u>

Attitude data reclassified according to the Retrace-3D scheme

WP 2 – Shallow crustal model

Seismic interpretation **COORDINATION GROUP**

Different softwares, same lexicon, parallel interpretation sessions

3D model time domain

C. D'AMBROGI - ISPRA

Inconsistency check and refinement (geometric, structural, stratigraphic)

D. SCROCCA - IGAG

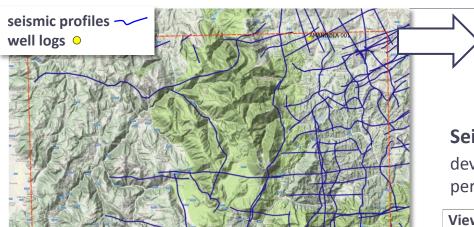
Instantaneous velocity 3D grid (check shot, sonic log and velocities from seismic data)

Depth conversion

M. BUTTINELLI - INGV

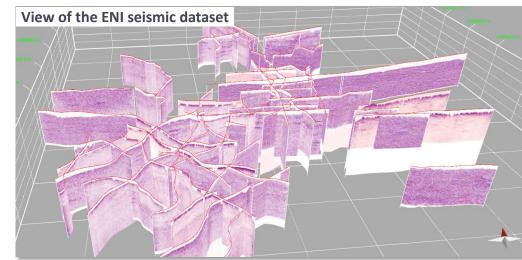
Test different approaches and results comparison (instantaneous velocity, interval velocities, different functions)

Grav/Mag modeling


F. FERRI - ISPRA

Modeling (2.75/3D) pairing the seismic interpretation

INGV



Quality check and datum shift



Seismic interpretation

developed by different groups according to common criteria, with periodic comparison meetings

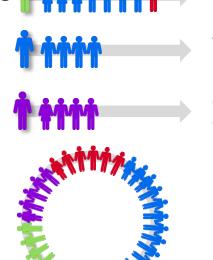
tRal italy EarThquakes integRAted Crustal modEl

WP 3 – Model extended to seismogenic depth

Grav/Mag modeling

F. FERRI - ISPRA

Tomography


I. IMPROTA - INGV

Thermal data and rheological models

R. CASTALDO - IRFA

Crustal model

Summarizing WP2/3 activities

Definition of: density and magnetic susceptibility contrasts, magnetic basement and Moho

Vp and Vs models based on Local Earthquake Tomography (local and regional) and Receiver Function analysis

Collection and processing of thermal data and geomechanical data to define ductile/brittle transition

Public workshop

Scientific community

WP 4 – Final crustal model

Geometric and kinematic validation (2D & 3D)

Geometrical check (stratigraphic/structural) Sequential restoration Forward modeling Analogical modeling

INGV **ISPRA**

IGAG

⊕ ⊕ ⊕

Cross-check with comparison data (WP 1.2)

GPS

Coseismic

surficial

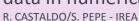
Quat geol,

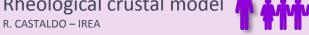
geomorph,

neotectonics

Crustal model and seismicity (comparison with catalogue)

RETRACE-3D Crustal Model


RETRACE-3D Applications


AP1 – Mechanical-structural model

P. TIZZANI - IREA

Integration of geological-structural and geophysical data in numerical calculation environment

Rheological crustal model

3D Finite Element kinematic crustal model

R. CASTALDO/S. PEPE - IREA

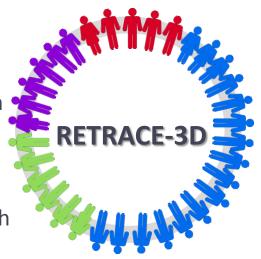
Optimization of 3D Finite Element kinematic crustal model through multiparameter optimization of ground deformations

R. CASTALDO - IREA

AP2 – Earthquake relocation

INGV

Earthquake re-location of 2016-2017 seismic sequence in 3D a-priori velocity models based on exploration data (seismics, well logs).


AP? – Microzonation studies

Support for the definition of the seismic input in microzonation studies.

RETRACE-3D societal added value

multi-expertise coordinated Working Group, formally organized under the umbrella of the National Department of Civil Protection

The results of the WG activities will be more easily usable for civil protection purposes, representing not the idea of a single research group, but of a large and qualified community

