GNGTS 14-11-2017

FIRST RESULTS OF A TRI-AXIAL FIBER BRAGG GRATING STRAIN SENSOR

Autori: <u>U. Giacomelli</u>, D. Carbone, S. Gambino, E. Maccioni, M. Orazi, R. Peluso, F. Sorrentino

TABLE OF CONTENTS

INTRODUCTION

SENSOR

DATA ELABORATION AND MEASUREMENT

PROJECT GOAL MED-SUV is an European project finalized to the study of Mediterranean volcanoes

FIBER BRAGG GRATING

Fiber Bragg Grating (FBG): is a periodic variation of the refractive index of the core fiber

SENSOR •00 DATA ELABORATION AND MEASUREMENT 00000000

THE SENSOR

INTERROGATION SYSTEM

ARRAY WAVEGUIDE GRATING

- ► 16 channels, one every 0.8 [nm], 0.6 [nm] FWHM
- ▶ Temperature sensibility ⇒ every 1 [°C] the channels are moving of 2 [pm]

SENSOR

S-RATIO

 $S(\Delta\lambda_B) = \frac{V_{n+1}(\Delta\lambda_B) - V_n(\Delta\lambda_B)}{V_{n+1}(\Delta\lambda_B) + V_n(\Delta\lambda_B)}$

- Costant sorce of light
- Photodiodes whith a costant gain in the used wavelength range
- FBG with a characteristic rest wavelength in the middle of two AWG channels

STRAIN EVALUATION

Laboratory test, made using an hydraulic press, confirmed the conversion value of 1 $[\mu\varepsilon/{\rm pm}]$

We have confirmed this value through the study of seismic and tele-seismic events

STRAIN EVALUATION

Laboratory test, made using an hydraulic press, confirmed the conversion value of $1 \, [\mu \varepsilon / \text{pm}]$

We have confirmed this value through the study of seismic and tele-seismic events

Because of the experimental procedure the sensitivity of the three axes is not the same, being the vertical one the most performing direction

INTRODUCTION	Sensor	DATA ELABORATION AND MEASUREMENT	
00	000	000000	

RAW DATA SINCE 01-MAY-2016

Meteorological data from the INAF station

Introduction	Sensor	DATA ELABORATION AND MEASUREMENT
00	000	0000000

FITTED DATA SINCE 01-MAY-2016

Position of GPS stations near the MED-SUV site

UNAVCO EVALUATION SHEET

Initial Input Data

Site Name	Longitude	Latitude	E velocity	E vel uncert	N velocity	N vel uncert
	west is negative	south is negative	(mm/yr)	(mm/yr)	(mm/yr)	(m/yr)
ECHR	14,912900000	37,686300000	-11	1	3	1
EINT	14,998333000	37,719467000	8	1	-22	1
ESPC	15,027419000	37,692526000	11	1	-20	1

Primary Output Data					
Translation Vector					
E component ± uncert (m/yr)	0,0027	±	0,00057735		
N component ± uncert (m/yr)	-0,0130	±	0,00057735		
Azimuth (degrees)	168,4				
Speed (m/yr)	0,0133				
Rotation ± uncertainty (degrees/yr)	-0,00008385	±	0,00001230		
Rotation ± uncertainty (nano-rad/yr)	-1463,5043	±	214,7514		
Direction of rotation	clockwise				
Max horizontal extension (e1H) (nano-strain)	2212,0455				
Azimuth of S1H (degrees)	97,8366	or	277,8366272		
Min horizontal extension (e2H) (nano-strain)	-2567,6710				
Azimuth of S2H (degrees)	7,8366	or	187,8366272		
Max shear strain (nano-strain)	4779,7164				
Area strain (nano-strain)	-355,6255				

Other Output					
	Lagrangian strain-rate tensor				
	exx ± uncert (nano-strain)	2123,1856	±	149,8905	
	εxy ± uncert (nano-strain)	-645,6227	±	214,7514	
	eyy ± uncert (nano-strain)	-2478,8112	±	402,4991	
	First invariant of strain-rate tensor (nano-strain)	-355,6255			
	Second invariant of strain-rate tensor (nano-strain)	-0,005679805			
	Third invariant of strain-rate tensor (nano-strain)	-0,005679805			

Sensor 000

ANNUAL TREND COMPARISON

Strainmeter

- Est 36.1 $\mu \varepsilon / y$
- ► North -39.2 με/y
- Vertical 0.17 $\mu \varepsilon / y$

GPS

- ► Est 2.2 με/y
- North -2.6 $\mu \varepsilon / y$
- ► Vertical 0.18 με/y

Sensor 000

ANNUAL TREND COMPARISON

Strainmeter

- Est 36.1 $\mu \varepsilon / y$
- ► North -39.2 με/y
- Vertical 0.17 $\mu \varepsilon / y$

GPS

- ► Est 2.2 με/y
- North -2.6 $\mu \varepsilon / y$
- ► Vertical 0.18 με/y

$$\varepsilon_{\mathrm{V}} = -\frac{\nu}{1-\nu} \left(\varepsilon_{\mathrm{E}} + \varepsilon_{\mathrm{N}}\right)$$

LOCAL SEISMIC EVENT 30-JAN-2017

THANK YOU FOR YOUR ATTENTION

