

First results of the Geodetic Integrated Monitoring System (GIMS) project

Eugenio Realini, Daniele Sampietro

Geomatics Research & Developemnt s.r.l.

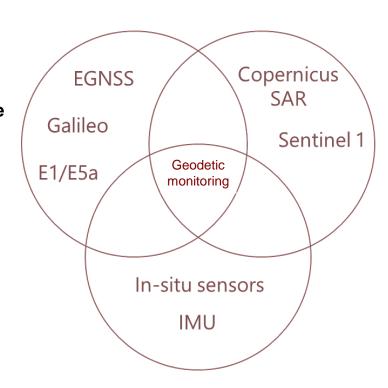
Geomatics Research & Development s.r.l. (GReD) is a Politecnico di Milano Spin-off SME, founded in 2012 under the supervision of Prof. Fernando Sansò

GReD activities concern research & development, consultancies and services in the field of geodesy and geomatics (acquisition, modelling, interpretation of geospatial information)

Analysis of gravimetric data for geophysical exploration (e.g. oil&gas)

GNSS deformation/displacement monitoring of land/structures

Clients / collaborations / funding



Key factors:

- Low-cost solution (hardware, software, data, ...)
- Designed as an end-to-end service
- Integration between Galileo GNSS,
 Sentinel InSAR and IMU
 - High temporal resolution: IMU, GNSS
 - High spatial resolution: InSAR
- Targeting different ground movements:
 - slow (long-term GNSS time series),
 - sudden accelerations/cracks (IMU),
 - area-wise deformation patterns (InSAR)

ے میں کر جانے میں میں میں کرنے کی میں کی میں میں میں میں میں کہ میں ہے۔

The consortium

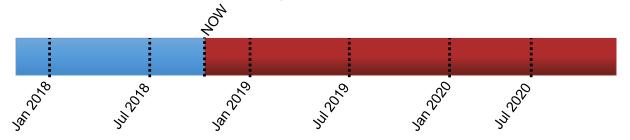
Consortium leader – administration, EGNSS processing

EGNSS hardware design and development

MEMS/IMU processing

Development of active reflectors and SAR processing

Project management and business development

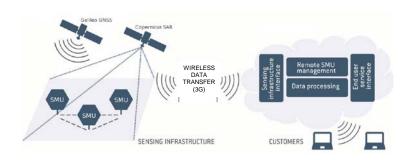

Geological interpretation and pilot test supervision

Estimated Project Cost: 2.2 million €


Project duration: 3 years November 2017 – October 2020

The GIMS system will be validated on two landslides, located in Slovenia

Motorway H4 Razdrto-Vipava (pilot area 1)

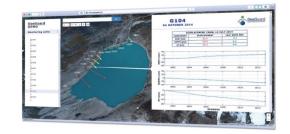


Gims project final scope

Once industrialized, the output of the GIMS project will be taken to the market by GReD, in collaboration with GIMS Partners, through the already existing GeoGuard® service (developed by GReD)

- Low-cost GPS
- No InSAR
- No IMU

The following examples are taken from the GeoGuard service



GEOGUARD

GeoGuard is an innovative <u>end-to-end service</u> based on **cost-effective GNSS receivers**, and **high-accuracy observation processing**, to measure structure displacements and deformations at **mm-level**

- Industrial Partner: Softeco
- Development started in: 2014
- Current stage: TRL9 (actual system proven in operational environment)
- Operative (2018): 16 sites, 70 monitored points

Awards H2020 SME Instr. 1 (2015) Keys to Japan (2015)

HOW PRECISE GNSS IS?

GNSS receivers measure the distance between their antenna and satellites in orbit by acquiring and tracking signals in L band.

The are passive systems.

Different kinds of receivers are available on the market, targeting different precision levels:

✓ Professional receivers → Millimeter precision → High cost

Cost ~ 25000 €

✓ Mass-market receivers → Meter precision → Low cost

do eldo elifo elo do eldo elo eldo eldo elifo elo do del eldo elo eldo elifo elifo do del del

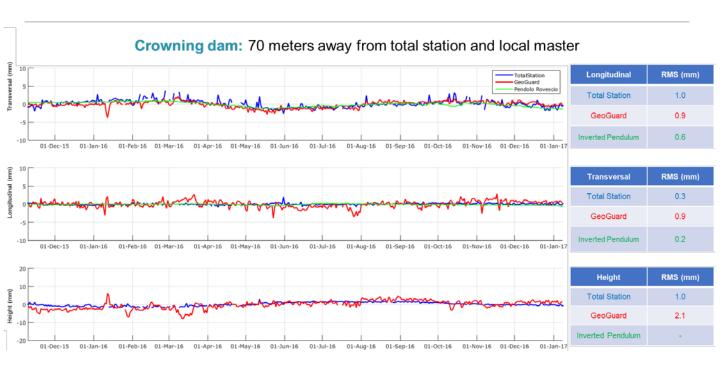
Cost ~ 2500 €

Millimeter precision

SITE I: DAM

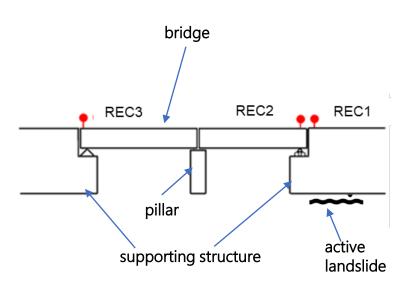
ó áldo eldo eldo elo dó áldo eló áldo eldo eldo elo dó áldo eló áldo eldo eldo eldo dó dó áldo el

SITE I: DAM



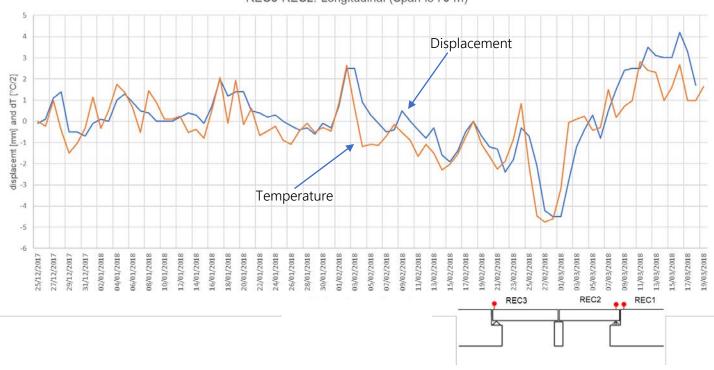
ó into eito esto en lo lidento en into esto esto en lo interior en into esto esto esto en la interior e

SITE I: DAM



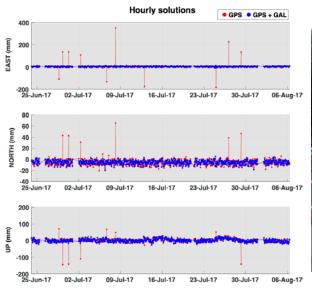
SITE II: HIGHWAY BRIDGE - SLIP DETECTION

SITE II: HIGHWAY BRIDGE - SLIP DETECTION



REC 2 Displacements, REC1 is master

SITE II: HIGHWAY BRIDGE - THERMAL DILATIO



ó álta elta ellia eli, tá álta eli álta elta ellia ella eli tá álta eli álta elta ellia elli eli tá álta e

Gims the role of Galileo

Adding Galileo to a GPS solution can increase drastically the stability of the solution for sites with limited sky visibility

Up to 80% better precision

 Single-frequency low-cost GNSS receivers can be used for geodetic monitoring with the following accuracies:

-very short baselines: ~ 1 mm (daily updates)

~ 2.5 mm (hourly updates)

-short baselines (up to 3 km): ~ 2 mm (daily updates)

~ 5 mm (hourly updates)

- The integration of Galileo and GPS further improves the accuracy of the solution, especially in bad sky visibility conditions;
- The integration of GNSS, SAR an IMU observations will allow for a complete (in the spatial and time domains) monitoring of the displacement.

Thank you for the kind attention

http://gims-project.eu

daniele.sampietro@g-red.eu

