GNGTS 2013 - Atti del 32° Convegno Nazionale

References Akkar S. and Bommer J.J.; 2010: Empirical equations for the prediction of PGA, PGV, and spectral Accelerations in Europe, the Mediterranean, and the Middle East .Seismol. Res. Lett., 81 (2) , 195–206. Ambraseys N.; 1970: Some characteristic features of the Anatolian fault zone , Tectonophysics, 9 , 143-65. Atakan K, Ojeda A, Meghraoui M, Barka AA, Erdik M, Bodare A.; 2002: Seismic hazard in Istanbul following the 17 August 1999 Izmit and 12 November 1999 Duzce earthquakes . Bull Seism Soc Am, 92 , 466–82. Barka A.A.; 1992: The North Anatolian Fault Zone , Ann. Tecton., 6 , 164–195. Erdik M., Demircioglu M., Sesetyan K., Durukal E., Siyahi B.; 2004: Earthquake hazard in Marmara Region,Turkey , Soil Dynamics and Earthquake Engineering, 24 , 605-631. Hubert-Ferrari A., Armijo R., King G., Meyer B., Barka A. ; 2002: Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey, J. Geophys. Res., 107(B10) , 2235, doi:10.1029/2001JB000393. King G. C. P., Stein R. S., Lin J.; 1994: Static stress changes and the triggering of earthquakes , Bull. Seismol. Soc. Am., 84 , 935–953. Matthews M. V., Ellsworth W. L., Reasenberg P.A.; 2002: A Brownian model for recurrent earthquakes , Bull. Seismol. Soc. Am., 92 , 2233–2250. Parson T., Toda S., Stein R.S., Barka A., Dietrich J.H.; 2000: Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation , Science, 288 , 661-665. Petersen M. D., Frankel A. D., Harmsen S. C., Mueller C. S., Haller K. M, Wheeler R. L., Wesson R. L., Zeng Y., Boyd O. S., Perkins D. M., Luco N., Field E. H., Wills C. J., Ruksatles K. S.; 2008:. Documentation for the 2008 update of the United States national seismic hazard maps , U.S. Geol. Surv. Open-File Rept., 2008–1128 ,60 pp. Stein R., Barka A., Dieterich J.; 1997 : Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering , Geophys. J. Int., 128 , 594-604. Wesnousky S. G.; 1994: The Gutenberg-Richter or characteristic earthquake distribution, which is it?, Bull. Seismol. Soc. Am., 84 , 1940-1959. Scoring procedures for probabilistic seismic hazard assessment (PSHA): a preliminary application in the frame of the DPC-INGV-S2 project (2012-2013) D. Albarello 1 , V. D’Amico 2 , L. Peruzza 3 1 Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università degli Studi di Siena, Italy 2 Istituto Nazionale di Geofisica e Vulcanologia, Sez. di Milano, Italy 3 Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Trieste, Italy Introduction. The probabilistic seismic hazard assessment (PSHA) aims providing forecasts about possible seismic occurrences (in terms of any ground motion characteristic) by accounting for their inherent “aleatory” character. However, a number of alternative co-existing alternative computational schemes, each “ex-ante” plausible and internally consistent but resulting in quite different hazard evaluations (see, e.g., Pace et al. , 2011). In general, uncertainty relative to the presence of alternative computational models is defined as “epistemic” (SSHAC, 1997). Thus, distinction between epistemic and aleatory uncertainty only has an heuristic value: while the last one is accounted within each PSHA procedure by the introduction of a suitable stochastic modelling of relevant processes, accounting for epistemic uncertainty requires a sort of meta-analysis with respect to each single procedure. This meta-analysis is mandatory since the presence of different PSHAs for the same area poses a number of problems to stake- holders responsible for political decisions and risk reduction strategies. This analysis should have two possible aims: selecting plausible procedures and combining the plausible ones to obtain “comprehensive” estimates accounting for both aleatory and epistemic uncertainty. In the following both aspects will be discussed in the frame of a coherent probabilistic formulation of the problem. Comprehensive seismic hazard curves and scoring. A generic i-th procedure for PSHA (including the computational scheme and the relevant pieces of information considered for the assessment) is denoted by H i . We assume that M of such procedures actually exist and that this set includes all the possible (proposed). Each hazard estimate relative to a ground shaking 9 GNGTS 2013 S essione 2.1

RkJQdWJsaXNoZXIy MjQ4NzI=