GNGTS 2013 - Atti del 32° Convegno Nazionale
subsurface investigation have evidenced that the ground fracture zone is aligned with the axis of a buried paleovalley, whose flanks represent sharp lateral discontinuities between an alternation of lavas and clastic deposits, infilling the valley, and the more homogeneous epiclastic sequences of the substratum. In this context, the coseismic fractures originated at almost right-angle to the valley orientation, being centred on its axis, and extend for a length which is consistent with the reconstructed width of the valley at depth. Finally, the fracture alignment abruptly interrupts at the mouth of the valley, which is controlled by a NE-SW oriented buried fault zone. The direct connection between their geometry and that of the buried valley strongly suggests interpreting the coseismic fracture zones of Santa Venerina as a site effect of the ground motion, determined by major lateral mechanical discontinuities of the substratum that likely produced a differential ground motion between the valley infilling and the surrounding terrains. As well, the active coseismic ground deformation along the Fiandaca and Santa Tecla faults, where cumulative features are absent, could be explained in terms of differential site response, due to the sharp lateral discontinuities of the rock mechanics on the opposite sides of the two major structures. The two faults, located at the southwestern border of the prominent Giarre Basin, can represent mechanical barrier along which the ground motion generated by seismic events located along the main seismogenic faults of the SCRZ, cutting through the Giarre Basin, concentrate their effects. References Azzaro R.; 1999: Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics . J. Geodyn., 28 , 193-213. Azzaro R.; 2004: Seismicity and active tectonics in the Etna region:constraints for a seismotectonic model . In: Bonaccorso A., Calvari S., Coltelli M., Del Negro C. and Falsaperla S. (eds.), «Mt. Etna: volcano laboratory», American Geophysical Union, Geophysical Monograph, 143 , 205-220. Azzaro R., Branca S., Gwinner K. and Coltelli M.; 2012: The volcano-tectonic map of Etna volcano, 1:100.000 scale: an integrated approach based on a morphotectonic analysis from high-resolution DEM constrained by geologic, active faulting and seismotectonic data . Ital. J. Geosci. (Boll. Soc. Geol. It.), 131 , No. 1, 153-170. Azzaro R., D’Amico S., Mostaccio A., Scarfì L., and Tuvè T.; 2006: Terremoti con effetti macrosismici in Sicilia orientale nel periodo Gennaio 2002 - Dicembre 2005 . Quad. di Geof., 41 , 1-60. Azzaro R., D’Amico S., Mostaccio A., Scarfì L. and Tuvè T.; 2009: Terremoti con effetti macrosismici in Sicilia orientale nel periodo Gennaio 2006 - Dicembre 2008 . Quaderni di Geofisica, 72 , 39 pp. Barreca G., Bonforte A. and Neri M.; 2013: A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation . J. Volcanol. Geotherm. Res., 251 , 170-186. Branca S., Coltelli M., De Beni E. and Wijbrans J.; 2007: Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data . Int J Earth Sci (Geol Rundsch) DOI 10.1007/s00531-006-0152-0 Calvari S. and Groppelli G.; 1996: Relevance of the Chiancone Volcanoclastic deposit in the recent history of Etna volcano (Italy) . J. Volcanol. Geotherm. Res., 71 , 239-258. Cassinis R., Cosentino P., Ponzini G. S. and Riuscetti M.; 1970: Contributo all’esplorazione geofisica lungo la costa etnea . Atti del Convegno Internazionale sulle acque sotterranee, Palermo 6-8 dicembre 1970, 144-154. Catalano S., De Guidi G., Monaco C., Tortorici G. and Tortorici L.; 2008: Active faulting and seismicity along the Siculo- Calabrian rift zone . Tectonophysics, 453 , 177-192. Chappell J. and Shackleton N.J.; 1986: Oxygen isotopes and sea level . Nature, 324 (6093), 137-140. Corsaro R.A. and Cristofolini R.; 2000: Subaqueous volcanism in the Etnean area: Evidence for hydromagmatic activity and regional uplift inferred from the Castle Rock of Acicastello . J. Volcanol. Geotherm. Res. 95 (1-4), 209-225. Corsaro A.R., Neri M. and Pompilio M.; 2002: Paleo-enviromental and volcano-tectonic evolution of the southeastern flank of Mt. Etna during the last 225 Ka inferred from the volcanic succession of the “Timpe”, Acireale, Sicily . J. Volcanol. Geotherm. Res., 113 , 289-306. Di Stefano A. and Branca S.; 2002: Long-term uplift rate of the volcano basement (southern Italy) based on biochronological data from Pleistocene sediments . Terra Nova, 14 , 61–68. Gillot P.Y., Kieffer G., and Romano R.; 1994: The evolution of Mount Etna in the light of potassium-argon dating . Acta Vulcanol., 5 , 81-87. Guest J. E., Chester D.K. and Duncan A.M.; 1984: The Valle del Bove, Mount Etna: its origin and relation to the stratigraphy and structure of the volcano . J. Volcanol. Geotherm. Res., 21 , 1-23. La Delfa S., Patanè G., Presti F., and Tringali G.; 2007: Changing in crust mechanical behaviour due to raising magma: A fracturing model of SE flank of Mt. Etna (Sicily) . Earth Planet. Sci. Lett., 256 , 493-509. Monaco C., De Guidi G. and Ferlito C.; 2010: The morphotectonic map of Mt. Etna . Boll. Soc. Geol. It., 129 (3), 408-428 Monaco C., Tapponnier P., Tortorici L. and Gillot P.Y.; 1997: Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily) . Earth Planet. Sci. Lett., 147 , 125-139. 47 GNGTS 2013 S essione 1.1
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=