GNGTS 2013 - Atti del 32° Convegno Nazionale
between about 90 and 150 m two shallow highly resistive nuclei were present due to drainage channels. In between the two draining channels there is an almost 10 m thick layer, probably constituted by the landslide body. Underlying there is a conductive layer limited on laterally by more resistive zones, probably constituted by bedrock. Finally, both lateral sectors of the ERT showed low resistivity zones that can be interpreted as clayey or water-rich material. The lateral limit of the landslide in the NE sector could be indicated by the change between conductive and resistive material close to 165-170 m. However, this change of electrical properties could also be related with a changing lithology. Piezometric data confirmed that the central and deeper part of the ERT can be related to a water-rich material. Conclusions. Although contrasts of electrical resistivity in the ERT images were not pronounced, it was possible to observe the presence of both lateral and vertical discontinuities, that could be ascribed to lithological limits and/or to physical variation of the same material with varying water content. In some instances, discontinuities allowed to better define the landslide geometry of deep zones, whereas this was not possible for all the ERT. Furthermore, ERT images highlighted the presence of very conductive areas, which can be an evidence of old landslide bodies and/or relatively more water saturated zones. A synoptic view on all the ERT carried out in the area showed high conductivity properties of the deeper material between the drains and lower conductivity in the shallower part (up to 10 m). Piezometric data showed that the higher conductivity values of deeper part can be related to the higher water presence. On the other hand, the more resistive shallow part is likely to be moving material, continuously drained and thus dryer. Is worth to underlie that the analysis of the ERT here presented is preliminary, because it is only based on electrical and geo-morphological features. Future steps will focus on the analysis of direct or indirect data collected in boreholes, in order to have a better interpretation of the ERT here presented. References Amore O., Basso C., Ciampo G., Ciarcia S., Di Donato V., Di Nocera S., Esposito P., Matano F., Staiti D. and Torre M., 1998. Nuovi dati stratigrafici sul Pliocene affiorante tra il fiume Ufita ed il torrente Cervaro (Irpinia, Appennino meridionale) . Bollettino della Societa Geologica Italiana 117 , 455–466 r indirect data Crostella A., Vezzani L., 1964. La geologia dell’Appennino Foggiano . Bollettino della Societa Geologica Italiana 83 , 121–141. Di Nocera S., Matano F., Pescatore T., Pinto F. and Torre M., 2011. Caratteri geologici del settore esterno dell’Appennino campano-lucano nei Fogli CARG. Rendiconti Online Società Geologica Italiana (Suppl. 12), 39–43. D’Argenio B., Pescatore T. and Scandone P., 1975. Structural pattern of the Campania–Lucania Apennines. In: Ogniben, L., Parotto, M., Praturlon, A. (Eds.), Structural Model of Italy.Quaderni de “La Ricerca Scientifica”, 90. Consiglio Nazionale delle Ricerche, Roma, pp. 313–327. Giordan D., Allasia P., Manconi A., Baldo M., Santangelo M., Cardinali M., Corazza A., Albanese V., Lollino G. and Guzzetti F.; 2013. Morphological and kinematic evolution of a large earthflow: The Montaguto landslide, southern Italy . Geomorphology, 187, 61–79, DOI:.10.1016/j.geomorph.2012.12.035. Guadagno F.M., Forte R., Revellino P., Fiorillo F. and Focareta M., 2005. Some aspects of theinitiation of debris avalanches in the Campania Region: the role of morphological slope discontinuities and the development of failure. Geomorphology 66 , 237–254. Guerriero L., Revellino P., Coe J.A., Focareta M., Grelle G., Albanese V., Corazza A. and Guadagno F.M., 2013. Multi- temporal Maps of the Montaguto Earth Flow in Southern Italy from 1954 to 2010. Journal of Maps, 9:1, 135-145, DOI: 10.1080/17445647.2013.765812. Ventura G., Vilardo G., Terranova C. and Bellucci Sessa E., 2011. Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy) . Remote Sensing of Environment, 115:12, 3237–3248. Pescatore T., Russo B., Senatore M.R., Ciampo G., Esposito P., Pinto F., Staiti D., 1996. La successione messiniana della valle del Torrente Cervaro (Appennino Dauno, Italia Meridionale). Bollettino della Societa Geologica Italiana 115 , 369–378. 100 GNGTS 2013 S essione 3.2
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=