GNGTS 2013 - Atti del 32° Convegno Nazionale
strato elettricamente polarizzabile mediante misure magnetotelluriche,” Atti del II Convegno di Geomagnetismo ed Aeronomia, a cura di A. Meloni e B. Zolesi, ING, Roma, 239-250, 1991. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, A. Siniscalchi, and M. Veneruso, “Self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas,” Ann. Geofis., Vol. 40, 519–537, 1997. Di Maio, R., D. Patella, Z. Petrillo, A. Siniscalchi, G. Cecere, and P. deMartino, “Application of electric and electromagnetic methods to the study of the Phlegrean Fields caldera,” Ann. Geofis., Vol. 43, 375-390, 2000. Esposito, R., D. Patella, “The role of the impedivity in the magnetotelluric response” PIER, 89, 225-253, 2009. Giammetti, S., D. Patella, A. Siniscalchi, and A. Tramacere, “The Siena Graben: Combined interpretation of DES and MT soundings,” Ann. Geofis., Vol. 39, 189–200, 1996. Kaufman, A. A. and G. V. Keller, The Magnetotelluric Sounding Method, Elsevier, Amsterdam, 1981. Mauriello, P., D. Patella, Z. Petrillo, and A. Siniscalchi, “An integrated magnetotelluric study of the Mt. Etna volcanic structur,” Ann. Geofis., Vol. 43, 325–342, 2000. Mauriello, P., D. Patella, Z. Petrillo, A. Siniscalchi, T. Iuliano, and C. Del Negro, “A geophysical study of the Mount Etna volcanic area,” Mt. Etna: Volcano Laboratory, Vol. 143, 273–291, ed. A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro, S. Falsaperla, American Geophysical Union, Geophysical Monograph Series, 2004. Mauriello, P., D. Patella, A. Siniscalchi, “The magnetotelluric response over 2D media with resistivity frequency dispersion,” Geophysical Prospecting, Vol. 44, 789-818, 1996 Patella, D., A. Tramacere, R. Di Maio, and A. Siniscalchi, “Experimental evidence of resistivity frequency-dispersion in magnetotellurics in the Newberry (Oregon), Snake River Plain (Idaho) and Campi Flegrei (Italy) volcano-geothermal areas,” J. Volcanol. Geoth. Res., Vol. 48, 61–75, 1991. Patella, D., “Tutorial: Interpretation of magnetotelluric measurements over an electrically dispersive one-dimensional earth,” Geophysical Prospecting, Vol. 35, 1-11, 1987. Patella, D., “I principi metodologici della magnetotellurica su mezzi generalmente dispersivi,” Annali di Geofisica, Vol. 36, 147-160, 1993. Patella, D., “On the role of the J-E constitutive relationship in applied geoelectromagnetism,” Ann.Geophys., Vol. 46, 589-597, 2003. Patella, D., “Modelling electrical dispersion phenomena in earth materials,” Ann. Geophys., Vol. 51, 2008. Pellerin, L., J. M. Johnston, and G. W. Hohmann, “A numerical evaluation of electromagnetic methods in geothermal exploration,” Geophysics, Vol. 61, 121–137, 1996. Zhdanov, M. S. and G. V. Keller, The Geoelectrical Methods in Geophysical Exploration , Elsevier, Amsterdam, 1994. Laboratory scale electrical resistivity measurements to monitor the heat propagation within porous media for low enthalpy geothermal applications N. Giordano 1 , L. Firmbach 2 , C. Comina 1 , P. Dietrich 2,3 , G. Mandrone 1 , T. Vienken 2 1 Department Earth Science - University of Torino, Italy 2 Department Monitoring & Exploration Technology - UFZ Leipzig, Deutschland 3 Centre for Applied Geoscience, Institute for Geosciences - University of Tubingen, Deutschland Introduction. In the context of energy transition, the utilization of the underground as a heat source and a volume for storing the thermal energy has gained increasing importance in recent years. Several kind of low enthalpy geothermal applications were developed and most of them are emerging in various European countries (in particular Northern Europe). Nevertheless, at present no homogenous legislation exists for economical, ecological or political control of these systems. It is common to find different temperature limits for groundwater reinjection and, additionally, various legal constraints for heat transfer (Hähnlein et al. , 2011). Within each country it is also not so rare that local governments allow what other administrations forbid. This confusion contribute to obstruct this growing market and does not guarantee a correct design and monitoring of these applications, which are fundamental for a valuable system’s efficiency and safety. The design of these applications is indeed mostly based on literature extracted values of the thermal properties and on numerical simulation of the heat propagation within soils. These assumptions are often inadequate for real applications and they could lead to system’s efficiency problems. According to Leong et al. (1998), coupling of ground data and detailed mathematical model of heat and moisture flow (i.e. numerical simulation) should be the starting point of a reliable design. Conversely there is not still any protocol for a large scale 122 GNGTS 2013 S essione 3.2
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=