GNGTS 2014 - Atti del 33° Convegno Nazionale

GNGTS 2014 S essione 1.1 11 Ferrari G. e Molin D.; 1985: Campo macrosismico del terremoto del 13 giugno 1542 , Atti del IV Convegno annuale del GNGTS, Roma, I , 373-386. Locati M., Camassi R., and Stucchi M.; 2011: DBMI11, the 2011 version of the Italian Macroseismic Database , Milano Bologna, http://emidius.mi.ingv.it/DBMI11. Mantovani E. et al.; 2013: Assetto tettonico e potenzialità sismogenetica dell’Appennino tosco-emiliano-romagnolo e della Val Padana . Firenze, Centro stampa Regione Toscana. Guidoboni E., et al.; 2007: CFTI4Med, Catalogue of Strong Earthquakes in Italy (461 B.C.-1997) and Mediterranean Area (760 B.C.-1500) . ��������� INGV-SGA. http://storing.ingv.it/cfti4med/. MiBAC; 2010: Linee guida per �� ����������� � ��������� ��� ������� ��� ���������� ���������� ������������ ���� la valutazione e riduzione del rischio del patrimonio culturale. Allineamento alle nuove Norme tecniche per le costruzioni, Ministero per i Beni e le Attività Culturali, Roma. Molin et al.; 2008: Materiali per un catalogo dei terremoti italiani: revisione della sismicità minore del territorio nazionale , Quaderni di Geofisica, 57 , INGV, Roma, 75 pp. + CDRom. Parenti R.; 2002: Dalla stratigrafia all’archeologia dell’architettura. Alcune recenti esperienze del laboratorio senese , Arqueologia de la Arquitectura, 1 , 73-82. Pierotti P. e Ulivieri D.; 2001: Culture sismiche locali , Pisa. Rovida A., Camassi R., Gasperini P. e Stucchi M.; 2011: CPTI11, La versione 2011 del Catalogo Parametrico dei Terremoti Italiani , Milano Bologna, http://emidius.mi.ingv.it/CPTI. The southern Matese active fault system: new geochemical and geomorphological evidence A. Ascione 1 , S. Bigi 2 , G. Ciotoli 3,4 , A. Corradetti 1 , G. Etiope 4 , L. Ruggiero 2 , P. Sacco 2 , C. Tartarello 2 , S. Tavani 1 , E. Valente 5 1 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università Federico II, Napoli, Italy 2 Dipartimento di Scienze della Terra, Università La Sapienza, Roma, Italy 3 Istituto di Geologia Ambientale e Geoingegneria – CNR-IGAG, Roma, Italy 4 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Roma, Italy 5 Dipartimento di Scienze Umanistiche, Sociali e della Formazione, Università del Molise, Campobasso, Italy Introduction. Assessment and mitigation of seismic hazard rely on the identification and geometric characterization of active structures. Crucial, to this task, is the definition of the relationships between shallow and deep-seated active structures, through a comprehensive approach combining surface and subsurface geology with seismological information. Indeed the detailed reconstruction of the active tectonics frame at the surface may provide a reliable picture of seismically active structures (e.g., Amoroso et al. , 2014), also in those areas featuring complex structural setting, e.g., a strong rheological contrast between deep and shallow structural levels [e.g., the southern Apennines: Ascione et al. (2013)]. The spatial distribution of surface deformation may be effectively detected by a variety of geomorphological indicators, and temporally constrained by the stratigraphical record. However, the topographical signature of faulting depends not only on fault offset and behaviour (in terms of slip per event and recurrence time; e.g., Slemmons and Depolo, 1986), but also on both the resistance to erosion of the faulted bedrock, and the sensitivity of the geomorphological scenario (e.g., Ascione et al. , 2013). �� ����� ������������� �� ������ �������� ������� ����� �� In areas characterised by highly erodible bedrock types or alluvial deposits, soil-gas measurement has received much attention as an elective method for tracing active hidden faults (e.g., Baubron et al. , 2002; Fu et al. , 2005; Ciotoli et al. , 2007, 2014; Al-Hilal and Al-Ali, 2010; Walia et al. , 2010), and monitoring seismic activity (e.g., Toutain and Baubron, 1999; Yang et al. , 2005; Kumar et al. , 2009; Walia et al. , 2012). ��� ������������� The stress/strain changes related to seismic activity may control fluid circulation at depth forcing crustal uid to migrate upwards, especially along faults (King, 1986; Ciotoli et al. , 2007). Fluid circulation at depth may alter the geochemical characteristics of the fault core (Annunziatellis et al. , 2008), which in turn can influence soil gas concentrations at the surface (e.g., Baubron et al. , 2002;

RkJQdWJsaXNoZXIy MjQ4NzI=