GNGTS 2014 - Atti del 33° Convegno Nazionale
84 GNGTS 2014 S essione 3.1 Acknowledgments. The reprocessing of the CROP profiles was partially supported by Geoenergy s.r.l. - Pisa. References Accaino, F., Nicolich, R., Tinivella, U., 2006. ������������ ��� ������� ��������� �� �������� ������� �� ������������ Highlighting the crustal structure of southern Tuscany by reprocessing of the CROP03 NVR profile. ����� �� ����� ����� �� ����� �� ���� �������� Boll. di Geof. teor. ed appl. 47 (3), 425-445. Accaino, F., Tinivella, U., Rossi, G., Nicolich, R., 2005. �������� �������� ���� �������� �� ���� ������� ������� ����� Geofluid evidence from analysis of deep crustal seismic data. J. Volcanol. Geotherm. Res. 148, 46-59. Barison, E., Brancatelli, G., Nicolich, R., Accaino, F., Giustiniani, M., Tinivella, U., 2011. ���� �������� �������� �� Wave equation datuming to marine OBS data and to land high resolution seismic profiling. �� �� ����� �������� �� ���� �������� J. of Appl. Geophys. 73 (3), 267-277. Batini, F., Bertini, G., Bottai, A., Burgassi, P.D., Cappetti, G., Giannelli, G., Puxeddu, M., 1983. �� ������ � ���� S. Pompeo 2 deep well: a high temperature and high pressure geothermal system. In: European Geotherm. Update, 3rd Int. Seminar on EC, R.&D. Projects, 341-353. Batini, F., Burgassi, P.D., Cameli, G.M., Nicolich, R., Squarci, P., 1978. ������������ �� ��� ����� �� ��� ���� ����������� Contribution to the study of the deep lithosphere profiles: “deep” reflecting horizons in Larderello-Travale geothermal field. Mem. Soc. Geol. It. 19, 474-484. Berryhill, J. R., 1984. Wave-equation datuming before stack. Geophysics 49, 2064-2066. Berryhill, J. R., 1979. Wave-equation datuming. Geophysics 44, 1329-1344. Bevc, D., 1997. Flooding the topography: wave equation datuming of land data with rugged acquisition topography. Geophysics 62, 1558-1569. Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., Accaino, F., Batini, F., Bertini, G., Ceccarelli, A., Nicolich, R., Rossi, G., Tinivella, U., 2005b. ������� ���������� �� ��� ���������� ����� �� �������� ������� �������� �������� ���� ��� Crustal structures in the geothermal areas of southern Tuscany (Italy): Insights from the CROP 18 deep seismic reflection lines. �� ��������� ��������� ���� ���� ������ J. Volcanol. Geotherm. Res. 148, 60-80. Brogi, A., Lazzarotto, A., Liotta, D., Nicolich, R., Ranalli, G., 2003a. L’orizzonte K nella crosta di Larderello (Campi geotermici della Toscana Meridionale). Boll. Soc. Geol. It. 122, 103-116. Cameli, G.M., Ceccarelli, A., Dini, I., Mazzotti, A., 2000. ������������ �� ��� ������� ���������� ������ �� ��� �������� Contribution of the seismic reflection method to the location of deep fractured levels in the geothermal fields of southern Tuscany (Central Italy). Proc. World Geotherm. Congr., Kyushu-Tohoku (Japan), 1025-1029. Cameli, G.M., Dini, I., Liotta, D., 1993. Upper crustal structure of the Larderello geothermal field as a fracture of post-collisional extensional tectonics. �������������� ���� �������� Tectonophysics 224, 413-423. Della Vedova, B., Vecellio, C., Bellani, S., Tinivella, U., 2008. ������� �������� �� ��� ���������� ���������� ����� Thermal Modellig of the Larderello geothermal field (Tuscany, Italy). Int. J. of Earth Sci. 97 (2), 317-332 Liotta, D., Cernobori, L., Nicolich, R., 1998. ���������� ������� ��� ��� ����������� ���� ������������� ����������� Restricted rifting and its consistence with compressional structures: results from CROP-3 traverse (Northern Apennines, Italy). Terra Nova 10, 1, 16-20. Liu, Z., 1995: Migration velocity analysis, PhD thesis, CWP, 168, Center for Wave Phenomena, Colorado School of Mine, Golden Co. USA. Wiggins J. W., 1984. Kirchhoff integral extrapolation and migration of nonplanar data. Geophysics 49, 1239-1248. Yilmaz, O., Lucas, D., 1986. Prestack layer replacement. Geophysics 51, 1355-1369. SH-wave reflection seismic survey at the Patigno landslide: integration with a previously acquired P-wave seismic profile E. Lauriti 1 , L. Meini 1 , A. Tognarelli 1 , A. Ribolini 1 and E. Stucchi 2 1 Department of Earth Sciences – Geophysics, University of Pisa, Italy 2 Department of Earth Sciences – Geophysics, University of Milan, Italy Introduction. Seismic investigation on landslide is hampered by several factors that could prevent the use of the reflection seismic method to characterize the subsurface architecture (Jongmans and Garambois, 2007). Moreover, acquisition and processing of reflection seismic data are more time consuming compared with other geophysical techniques such as refraction seismic and electrical resistivity tomography (ERT), leading inevitably to higher costs. Notwithstanding these difficulties, recently some attempts to delineate the deep slip surface of large landslides have been carried out using P-wave reflection seismic surveys (Apuani et al. , 2012; Stucchi and Mazzotti, 2009; Stucchi et al. , 2014;). P-wave reflection seismic method is effective in imaging the slip surface at a depth sufficiently greater than the seismic wavelength, whereas, for very shallow horizons, it suffers from the limited resolution that can be obtained
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=