GNGTS 2014 - Atti del 33° Convegno Nazionale

C. Piga, L. Piroddi, E. Pompianu, G. Ranieri, S. Stocco, A. Trogu (2013). Integrated geophysical and aerial sensing methods for archaeology: a case history in the Punic site of Villamar, (Sardinia – Italy).Remote Sens., 5, 1-x manuscripts; doi:10.3390/rs50x000x G. Ranieri, D. Schirru, A. Trogu, A. Saba (2013). ������� �� ����������� �� ����� ������� ������ ��� ����������� Towards an integration of laser scanner survey and geophysical prospection: an example from the Nuragic Site of Mont ‘e Nuxi – Esterzili (Sardinia, Italy). Proceedings of the 10 th International Conference on Archaeological Prospection 2013. Vienna, 29 Marzo-2 Giugno 2013. G. Ranieri, L. Sharpe, A. Trogu, C. Piga (2007). ���������� ���������� ����������� ���������� �� ��������� ��� Time-lapse electrical resistivity tomography to delineate mud structures in archaeological prospections. Near Surface Geophysics, 5, 375-382. ISSN: 1569-4445. B.K. Sternberg, J.W. McGill (1995) Archaeology studies in southern Arizona using ground penetrating radar. Journal of Applied Geophysics, 33, 209-225. A. Trogu, G. Ranieri, S. Calcina, L. Piroddi, (2014). The Ancient Roman Aqueduct of Karales (Cagliari, Sardinia, Italy): Applicability of Geophysics Methods to Finding the Underground Remains. Archaeological Prospection, 21 (3), 157-168, doi: 10.1002/arp.1471 T.M. Urban, J.F. Leon, S.W. Manning, K.D. Fisher (2014). High resolution GPR mapping of Late Bronze Age architecture at Kalavasos- Ayios Dhimitrios , Cyprus. Journal of Applied Geophysics, 107, 129–136, DOI: 10.1016/ j.jappgeo.2014.05.020. K. Welham, J. Fleisher, P. Cheetham, H. Manley, C. Steele, S. Wynne-Jones, (2014) Geophysical Survey in Sub- Saharan Africa: magnetic and Electromagnetic Investigation of the UNESCO World Heritage Site of Songo Mnara, Tanzania. Archaeological Prospection, doi:10.1002/arp.1487. B.M. Whiting, D.P. McFarland, S. Hackenberger (2001) Three-dimensional GPR study of a prehistoric site in Barbados, West Indies. ������� �� ������� ����������� ��� �������� Journal of Applied Geophysics, 47, 217-226. Final results of “Terme Caronte” geothermal area (Calabria, Italy) E. Rizzo 1 , G. Iovine 2 , F. Muto 3 , A. Caputi 1 , L. Capozzoli 1 , V. Giampaolo 1 , L. Pizzino 4 , A. Manzella 5 1 CNR-IMAA, Tito (PZ), Italy 2 CNR-IRPI U.O.S. of Cosenza, Italy 3 University of Calabria, Rende, Italy 4 INGV, Roma, Italy 5 CNR-IGG, Pisa, Italy Introduction. The VIGOR project is aimed at assessing the geothermal potential and exploring geothermal resources of four regions in southern Italy, and it is part of the activities of the Interregional Programme “Renewable Energies and Energy Savings FESR 2007-2013 – Axes I Activity line 1.4 “Experimental Actions in Geothermal Energy”. During the final stage of the project, a bore-hole has been realized and reached a depth of more then 900 m. This direct investigation is the last part of the investigation of the low-medium enthalpy geothermal resources at “Terme Caronte”, in the Lamezia Terme territory (Calabria - Southern Italy). The assessment work, characterized by geophysical, geochemical and geological investigation around the localized hot springs,in the Terme Caronte area, has defined the subsurface and the deep structures correlated to the deep geothermal fluid circulation. Geological, geochemical and geophysical previous data: first part of Vigor project. The studied area is located at the westernmost edge of the Catanzaro Graben (Fig. 1), one of the most important cross-dislocations of the Calabrian Arc (hereafter referred to CA), where metamorphic and crystalline Alpine rocks and Hercynian rocks (Calabrian basement Complex) cropping out in the Sila massif (upperplate), overthrust on apennine carbonate units (underplate). In the frame of the Mediterranean mobile belt, the Calabrian Arc is an arc-shaped continental fragment located between the E-W trending Sicilian Maghrebides, to the south, and the NW– SE trending Apennines, to the north (Ogniben, 1973; Amodio-Morelli et al. , 1976; Bonardi et al. , 2001, and references therein). All these rocks are dissected by a complex assemblage of high-angle faults, which can be ordered in a number of major systems and patterns, partly related to transcurrent faulting. As a whole, the regional structural framework is characterized 186 GNGTS 2014 S essione 3.2

RkJQdWJsaXNoZXIy MjQ4NzI=