GNGTS 2015 - Atti del 34° Convegno Nazionale

88 GNGTS 2015 S essione 1.2 GeoGuard si presenta quindi come un servizio innovativo end-to-end per il monitoraggio continuo delle infrastrutture critiche e dei rischi naturali dove l’utente finale non deve preoccuparsi dell’analisi dei dati raw GNSS ma solamente l’eventuale modellizzazione e interpretazione delle deformazioni. Bibliografia Benoit L., Briole P., Martin O., Thom C. (2014). Real-time deformation monitoring by a wireless network of low-cost GPS , Journal of Applied Geodesy, 8(2): 1-10. Biagi L., Caldera, S. (2011). The automation of permanent networks monitoring: remarks and case studies , Applied Geomatics, 3(3): 137-152. Borghi A., Aoudia A., Riva R. E. M., Barzaghi R. (2009). GPS monitoring and earthquake prediction: A success story towards a useful integration , Tectonophysics, 465(1): 177-189. Buchli B., Sutton F., Beutel J. (2012). GPS-equipped wireless sensor network node for high-accuracy positioning applications , Wireless Sensor Networks, G. Picco, W. Heinzelman (eds), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 179-195. Chan W. S., Xu Y. L., Ding X. L., Dai W. J. (2006). An integrated GPS-accelerometer data processing technique for structural deformation monitoring , Journal of Geodesy, 80(12): 705-719. Cina A., Piras M. (2014). Performance of low-cost GNSS receiver for landslides monitoring: test and results , Geomatics, Natural Hazards and Risk (pubblicato online), 3-20. Dach R., Hugentobler U., Fridez P., Meindl M. (2007). Bernese GPS software version 5.0 . Astronomical Institute, University of Bern. Fastellini G., Radicioni F., Stoppini, A. (2011). The Assisi landslide monitoring: a multi-year activity based on geomatic techniques , Applied Geomatics, 3(2): 91-100. Geckle W. J., Feen M. M. (1982). Evaluation of the ionospheric refraction correction algorithm for single-frequency Doppler navigation using TRANET-II data , PLANS’82-Position Location and Navigation Symposium, Atlantic City, NJ, 13-21. Herrera A. M., Suhandri H. F., Realini E., Reguzzoni M., de Lacy M. C. (2015). goGPS: open-source MATLAB software , GPS Solutions (pubblicato online), DOI 10.1007/s10291-015-0469-x. Heunecke O., Glabsch J., Schuhbaeck S. (2011). Landslide monitoring using low cost GNSS equipment - experiences from two alpine testing sites , Journal of Civil Engineering and Architecture, 5(8): 661-669. Kaloop M. R., Li H. (2009). Monitoring of bridge deformation using GPS technique , KSCE Journal of Civil Engineering, 13(6): 423-431. Klobuchar J. A. (1987). Ionospheric time-delay algorithm for single- frequency GPS users , IEEE Transactions on Aerospace and Electronic Systems, 23(3): 325-331. Meng X., Dodson A. H., Roberts G. W. (2007). Detecting bridge dynamics with GPS and triaxial accelerometers , Engineering Structures, 29(11): 3178-3184. Realini E., Reguzzoni M. (2013). goGPS: open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning , Measurement Science and Technology, 24(11): 115010. Roberts G. W., Meng X., Dodson A. H. (2004). Integrating a global positioning system and accelerometers to monitor the deflection of bridges , Journal of Surveying Engineering, 130(2): 65-72. Saastamoinen J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites , The Use of Artificial Satellites for Geodesy, Wiley Online Library, 247-251. Wang G. (2011). GPS landslide monitoring: single base vs. network solutions - a case study based on the Puerto Rico and Virgin Islands permanent GPS network , Journal of Geodetic Science, 1(3): 191-203. Watson C., Watson T., Coleman R. (2007). Structural monitoring of cable-stayed bridge: analysis of GPS versus modeled deflections , Journal of Surveying Engineering, 133(1): 23-28. Yi T. H., Li H. N., Gu M. (2013). Recent research and applications of GPS-based monitoring technology for high-rise structures , Structural Control and Health Monitoring, 20(5): 649-670.

RkJQdWJsaXNoZXIy MjQ4NzI=