GNGTS 2015 - Atti del 34° Convegno Nazionale
Inspection of the dispersion curves acquired through ESAC and MASW prospections (Fig. 3c), shows that only slight differences in the quality of the obtained phase velocity – frequency plots, are present. The comparison of the two methodology clearly shows the prevailing of the contribution of high frequencies (>15.0 Hz) components in the definition of the MASW dispersion curves whereas, the phase velocity - frequency curves obtained through the ESAC approach, appear better defined at lower frequency (>5.0 Hz). ��������� ����������� �� Sediments outcropping at Salinelle according to the results of the dispersion curve inversion have a shear wave velocity in the range 100-200 m/s and a thickness of about 8-10 m. Concluding remarks. The results obtained in the Salinelle area can be summarized as follow: - the HVNRs put into evidence the presence of a hydrocarbon reservoir highlighted by the presence of a low frequency peak around 0.1 Hz followed by a de-amplification; - the low frequency peak is strongly directional, with strike oriented ENE-WSW, suggesting the existence of a NNW-SSE oriented fracture system; - the high variability in frequency and direction above 1.0 Hz could be linked to the vibration of small blocks or fractures. At frequencies higher than 10.0 Hz, evidences of a thin Salinelle deposit and noise generated by the gas emission is present; - ESAC and MASW prospections allowed us to determine the possible thickness and shear wave velocity of the Salinelle deposits. References Adrian J., Langenbach H., Tezkan B., Gurk M., Novruzov A. G. and Mammadov A. L.; 2015: Exploration of the Near-surface Structure of Mud Volcanoes using Electromagnetic Techniques: A Case Study from Perekishkul, Azerbaijan. �� �������� ���� ��������� ��� �������� ��������������������� J. Environ. Eng. Geophys., 20, 153-164, 10.2113/JEEG20.2.153. Aiuppa A., Allard P., D’Alessandro W., Giammanco S., Parello F. and Valenza M.; 2004: Magmatic gas leakage at Mount Etna (Sicily, Italy): relationships with the volcano-tectonic structures, the hydrological pattern and the eruptive activity. ��� ����������� ��� �������� ��� ��������� ��� ��� ������ ��� ����������� �� ������� ��� ����� In: Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S. (Eds.), Mt. Etna: Volcano Laboratory. �������� ����������� ������ ����������� ��� �������� �������������������� American Geophysical Union, Washington, DC, 129–145, doi:10.1029/143GM09. Aiuppa A., Moretti R., Federico C., Giudice G., Gurrieri S., Liuzzo M., Papale P., Shinohara H. and Valenza M.; 2007: Hiroshi. ����������� ���� ��������� �� ��������� ����������� �� �������� ��� ������������ �������� ��� Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology, 35, 1115-1118, doi: 10.1130/G24149A.1. Albarello D. and Gargani F.; 2010: Providing NEHRP soil classification from the direct interpretation of effective Rayleigh waves dispersion curves. Bull. Seismol. Soc. Am., 100, 3284–3294, doi: 10.1785/0120100052. Albarello D., Palo M. and Martinelli G.; 2012: Monitoring methane emission of mud volcanoes by seismic tremor measurements: a pilot study. Nat. Hazards Earth Syst. Sci., 12, 3617–3629, doi:10.5194/nhess-12-3617-2012. Allard P., Carbonnelle J., Dajlevic D., Le Bronec J., Morel P., Robe M. C., Maurenas J. M., Faivre-Pierret R., Martin D., Sabroux J.C. and Zettwoog P.; 1991: Eruptive and diffuse emissions of CO2 from Mount Etna. ������� ���� Nature, 351, 387-391. Amici S., Turci M., Giulietti F., Giammanco S., Buongiorno M. F., La Spina A. and Spampinato L.; 2013: Volcanic environments monitoring by drones mud volcano case study. ������������� �������� �� ��� ��������������� International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2, 2013 UAV-G2013, 4-6, Rostock, germane, doi: 10.5194/isprsarchives-XL-1-W2-5-2013. Bard P. Y.; 1998: Microtremor measurements: a tool for site effect estimation? Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion. Yokohama, Japan, pp. 1251–1279. Cangemi M. and Madonia P.; 2014: Mud volcanoes in onshore Sicily: a short overview. In: Wiese, F.; Reich, M. & Arp, G. (eds.): ”Spongy, slimy, cosy & more…”. Commemorative volume in celebration of the 60th birthday of Joachim Reitner. Göttingen Contributions to Geosciences 77: 123–127. http://dx.doi.org/10.3249/webdoc-3923. Caracausi A., Italiano F., Nuccio P. M., Paonita A. and Rizzo A.; 2003: Evidence of deep magma degassing and ascent by geochemistry of peripheral gas emissions at Mt. Etna (Italy): assessment of the magmatic reservoir pressure. �J Geophys Res 108 (B10): 2463 doi: 10.1029/2002JB002095. Carveni P., Benfatto S. and Sturiale G.; 2001: Aspetti geologici e geomorfologici dei vulcani di fango del basso versante sud-occidentale etneo ed ipotesi sulla loro genesi. Il Quaternario, 14 (2), 117-130. Carveni P., Barone F., Benfatto S., Imposa S. and Mele G.; 2012: Mud volcano fields in the Mt. Etna area (eastern Sicily). ��� �� ������ ������ �������������� ����� ������� ��� ������� �� ���������������� �������� ������� In: C. Giusti (Ed.), Geomorphosites 2009: raising the profile of geomorphological heritage through iconography, inventory and promotion, Paris Sorbonne Université, Paris, 54-60. Chiodini G., D’Alessandro W. and Parello F.; 1996: Geochemistry of gases and waters discharged by the mud volcanoes at Paternò, Mt. Etna (Italy). ����� ���������� ��� ������ Bull. Volcanol., 58, 51–58. 148 GNGTS 2015 S essione 1.3
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=