GNGTS 2015 - Atti del 34° Convegno Nazionale

GNGTS 2015 S essione 1.1 By taking into account the slip historically observed in the field along the Moscarello fault and the PP2001 stress, we modelled the areal distribution of ∆CFS at a depth of 0.4 km as well as for three different sections crossing TFS (Fig. 3). In particular, we show two different computations considering faults that could be “encouraged” to slip, with dip-slip (Fig. 3a) and strike-slip kinematics (Fig. 3b), respectively. We observe that some faults, or parts of them, fall within lobes with increase of stress (red areas), where the rupture should be favored, while faults, or parts of them, that are located in areas in which the ∆CFS is negative (blue areas), are those potentially inhibited to slip. Also in this computation, we observe that the southern section of the S. Tecla fault, where the August 1865 earthquake nucleated, is characterized by a positive ∆CFS, confirming the observations inferred from the previous computation. These results, although preliminary, suggest that the August 19, 1865 earthquake could be potentially “triggered” by a stress transfers mechanism. Further tests on other case-histories might indicate if the stress transfer represents a common mechanism during faulting at Etna and therefore, provides useful constraints on the processes controlling it. References Alparone S., Barberi G., Bonforte A., Maiolino V. and Ursino A.; 2011: Evidence of multiple strain fields beneath the eastern flank of Mt Etna volcano (Sicily, Italy) deduced from seismic and geodetic data during 2003–2004 . Bull. Volcanol., 73 , 869-885, doi: 10.1007/s00445-011-0456-1. Alparone S., Barberi G., Cocina O., Giampiccolo E., Musumeci C. and Patanè D.; 2012: Intrusive mechanism of the 2008–2009 Mt. Etna eruption: Constraints by tomographic images and stress tensor analysis . J. Volcanol. Geotherm. Res., 229-230 , 50-63, doi: 10.1016/j.jvolgeores.2012.04.001. Alparone S., Bonaccorso A., Bonforte A. and Currenti G.; 2013: Long-term stress-strain analysis of volcano flank instability: The eastern sector of Etna from 1980 to 2012 . J. Geophys. Res. Solid Earth, 118 , doi: 10.1002/ jgrb.50364. Alparone S., Cocina O., Gambino S., MostaccioA., Spampinato S., Tuvè T. and UrsinoA.; 2013: Seismological features of the Pernicana–Provenzana fault system (Mt Etna, Italy) and implications for the dynamics of northeastern flank of the volcano . J. Volcanol. Geotherm. Res., 251 , 16-26, doi: 10.1016/j.jvolgeores.2012.03.010. Alparone S., Maiolino V., Mostaccio A., Scaltrito A., Ursino A., Barberi G., D’Amico S., Di Grazia G., Giampiccolo E., Musumeci C., Scarfì L., and Zuccarello L.; 2015: Instrumental seismic catalogue of Mt. Etna earthquakes (Sicily, Italy): ten years (2000-2010) of instrumental recording. Ann. Geophys., 58 (4), doi: 10.4401/ag-6591. Azzaro R.; 1999: Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics . ��J. Geodyn. 28 , 193-213, doi: 10.1016/S0264-3707(98)00037-4. Azzaro R.; 2004: Seismicity and active tectonics in the Etna region: constraints for a seismotectonic model . ���In: Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S., (eds.) ��� ����� ������� ����������� �������� Mt. Etna: volcano laboratory, American Geophysical Union, Geophysical monograph, 143 , pp. 205-220. Azzaro R., Branca S., Gwinner K. and Coltelli, M.; 2012: The volcano-tectonic map of Etna volcano, 1:100.000 scale: morphotectonic analysis from high-resolution DEM integrated with geologic, active faulting and seismotectonic data . It. J. Geosci. (Boll. Soc. Geol. It.), 131 (1), 153-170. Azzaro R., D’Amico S., Peruzza L. and Tuvè T.; 2013b: Probabilistic seismic hazard at Mt. Etna (Italy): the contribution of local fault activity in mid-term assessment . J. Volcanol. Geotherm. Res., 251 , 158-169, doi: 10.1016/j.jvolgeores.2012.06.005. Azzaro R., Bonforte A., Branca S. and Guglielmino, F.; 2013a. Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily) . J. Volcanol. Geotherm. Res., 251 , 5-15, doi: 10.1016/ j.jvolgeores.2012.10.001. Barberi G., Cocina O., Maiolino V., Musumeci C. and Privitera E.; 2004: Insight into Mt. Etna (Italy) kinematics during 2002-2003 eruption as infered from seismic stress and strain tensors . Geophys. Res. Letters, 31 , L21614, doi: 10.1029/2004GL020918. Beeler N.M., Simpson R.W., Hickman S.H. and Lockner D.A.; 2000: Pore fluid pressure, apparent friction and Coulomb failure . J. Geophys. Res., 105 , 25,533-25,542, doi: 10.1029/2000JB900119. Bonaccorso A., Currenti G., and Del Negro C.; 2013: Interaction of volcano-tectonic fault with magma storage, intrusion and flank instability: a thirty years study at Mt. Etna volcano . J. Volcanol. Geotherm. Res., 251 , 127- 136, doi: 10.1016/j.jvolgeores.2012.06.002. Bonanno A., Palano M., Privitera E., Gresta S. and Puglisi G.; 2011: Magma intrusion mechanisms and redistribution of seismogenic stress at Mt. Etna volcano (1997-1998) . ����� ���� ��� �������� ���� ��������������� Terra Nova 23, 339-348, doi: 10.1111/j.1365- 3121.2011.01019.x.

RkJQdWJsaXNoZXIy MjQ4NzI=