GNGTS 2018 - 37° Convegno Nazionale

182 GNGTS 2018 S essione 1.2 of folding and thus of strike-slip faulting. Publicly available high-resolution digital elevation models, 0.5 mt/px orthophotos, and 1:50.000 geological map have been combined to carry out a remote sensing analysis of the possible neotectonic features, which has been integrated with the study of long profiles of the streams crossing the folded structure and displaying fluvial captures. Our study provide evidence of fluvial meander and alluvial fan tilting during the late Miocene or earlier. Instead, the fluvial captures developed after the end of folding, in the framework of the regional capture of the tributaries of the Duero river by the Ebro River since the late Pliocene period. In agreement, we conclude that the Rojas fold system has started its last stage of folding at least during the Late Miocene but it is essentially inactive at least since the late Pliocene. References Alvarez-Marrón, J. (1995). Three-dimensional geometry and interference of fault-bend folds: examples from the Ponga Unit, Variscan Belt, NW Spain. Journal of Structural Geology 17, 549-560. García-Mayordomo, J., Insua-Arévalo, J.M., Martínez-Díaz, J.J., Jiménez-Díaz, A., Martín-Banda, R., Martín- Alfageme, S., Álvarez-Gómez, J.A., Rodríguez-Peces, M., Pérez-López, R., Rodríguez-Pascua, M.A., Masana, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E.S., Cabral, J., and the QAFI Compilers Working Group (2012). The Quaternary Active Faults Database of Iberia (QAFI v.2.0), Journal of Iberian Geology, 38, 285-302 Gracia Prieto, F.J., Nozal Martín, F., Pineda Velasco, A., Wouters de Vries, P.F. (1990) Superficies de erosión neógenas y neotectónica en el borde NE de la Cuenca del Duero. Geogaceta, 7, 38-40. Hernaiz, P.P. (1994). La falla de Ubierna (margen SO de la cuenca Cantabrica). Geogaceta, 16, 39-42. López-Fernández, C., Fernández-Viejo, G., Olona, J., Llana-Fúnez, S. (2018) Intraplate seismicity in Northwest Iberia along the Trace of the Ventaniella Fault: A Case for Fault Intersection at Depth. Bulletin of the Seismological Society of America 108 (2), 604-618. Nozal Martín, F., Gracia Prieto, F.J. (1990). El piedemonte de la Sierra del Brezo (Montes Palentinos). Primera Reunión Nacional de Geomorfología, Teruel. 763-772. Tavani, S., Quintà, A., Granado P. (2011), Cenozoic right-lateral wrench tectonics in the Western Pyrenees (Spain): The Ubierna Fault System. Tectonophysics, 509, 238-253, DOI:10.1016/j.tecto.2011.06.013. LATE QUATERNARY VERTICAL MOTIONS OF THE TYRRHENIAN COAST OF THE CALABRIA-BASILICATA BOUNDARY (ITALY) C. Cerrone 1 , A. Ascione 1 , G. Robustelli 2 , M. Soligo 3 , P. Tuccimei 3 , G. Balassone 1 , A. Mormone 4 1 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse - DiSTAR, Università degli Studi di Napoli Federico II, Napoli, Italy 2 Dipartimento di Biologia, Ecologia e Scienze della Terra, DiBEST, Università della Calabria, Rende (Cs), Italy 3 Dipartimento di Scienze, Università Roma Tre, Roma, Italy 4 Istituto Nazionale di Geofisica e Vulcanologia - INGV, Osservatorio Vesuviano, Napoli, Italy Introduction. The Tyrrhenian coast of Calabria-Lucania boundary has been investigated in depth combining geomorphological and stratigraphical approaches to get new quantitative data on its surface uplift history. In the study region, which spans from Maratea (Basilicata region) to Scalea (Calabria region), starting from Late Tortonian times back arc extension and opening of the Tyrrhenian Sea was coeval with the shortening in the chain (e.g., Butler et al. , 2004, and references therein). Surface uplift is referred to as “the displacement of the Earth’s surface with respect the geoid” (England and Molnar, 1990) or, analogously, with respect to the mean sea level. Erosional indicators of fossil sea-level positions, e.g. abrasion platforms, marine notches and potholes, are well recorded on hard rocks (Evelpidou and Pirazzoli, 2015), as are those forming

RkJQdWJsaXNoZXIy MjQ4NzI=