GNGTS 2018 - 37° Convegno Nazionale
208 GNGTS 2018 S essione 1.2 and Duda, 1964, Doglioni et al. , 2015b) predict a magnitude increase between 1 and 2 times with BDT deepening of 5–15 km. These results are consistent with global seismic data that show a linear increase between convergence rates and earthquake magnitude for earthquakes nucleated along plate-boundary thrust faults. References Babeyko A.Y., Sobolev S.V., Trumbull R.B., Oncken O. and Lavier L.L., 2002; Numerical models of crustal scale convection and partial melting beneath the Altiplano–Puna plateau. Earth Plan. Sci. Lett., 199 (3-4), 373-388. Bath M. and Duda S.J., 1964; Earthquake volume, fault plane area, seismic energy, strain, deformation and related quantities. Annals Geophys., 17 (3), 353-368. Bird P., Kagan Y.Y., Jackson D.D., Schoenberg F.P. and Werner M.J., 2009; Linear and nonlinear relations between relative plate velocity and seismicity. Bull. Seism. Soc. Am., 99 (6), 3097-3113. Chiarabba C. and De Gori P., 2016; The seismogenic thickness in Italy: constraints on potential magnitude and seismic hazard. Terra Nova, 28 (6), 402-408. Doglioni C., Barba S., Carminati E. and Riguzzi F., 2015a; Fault on-off versus strain rate and earthquakes energy. Geosci. Front., 6 (2), 265-276. Doglioni C., Carminati E., Petricca P. and Riguzzi F., 2015b; Normal fault earthquakes or graviquakes. Sci. Rep., 5 , 12110. Ide S., 2013; The proportionality between relative plate velocity and seismicity in subduction zones. Nat. Geo., 6 (9), 780. Leonard M., 2010; Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bull. Seis. Soc. Am., 100 (5A), 1971-1988. Petricca P., Barba S., Carminati E., Doglioni C. and Riguzzi F., 2015; Graviquakes in Italy. Tectonophysics, 656 , 202-214. Ruff L. and Kanamori H., 1983; Seismic coupling and uncoupling at subduction zones. Tectonophysics, 99 (2-4), 99-117. GEOLOGICAL CONTROL OF HYDROLOGICAL TRANSIENT DEFORMATION IN VENETIAN SOUTHERN ALPS F. Pintori 1 , E. Serpelloni 2 , L. Longuevergne 3 , M.E. Belardinelli 1 , A. Gualandi 4 , L. D’Alberto 5 , E. Scoccimarro 6 , M. Todesco 7 1 Dipartimento di Fisica e Astronomia, Settore di Geofisica, Università di Bologna, Bologna, Italy 2 Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti, Bologna, Italy 3 Géosciences Rennes, Université de Rennes 1, Rennes, France 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 5 Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto, Padova, Italy 6 Fondazione Centro euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy 7 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy The increased availability of precise Global Positioning System (GPS) data, or more generally Global Navigation Satellite System (GNSS), that are dense in both space and time is transforming how scientists measure and visualize active Earth’s processes on land, water, ice and in the atmosphere. The Euro-Mediterranean region is now monitored by thousands of continuously operating GPS stations, providing increasingly detailed measurements of interseismic, coseismic and postseismic deformation occurring at plate boundaries. At the same time, the availability of continuous ground displacement monitoring enables the study of transient deformation processes of different origin. The study of transient deformation signals is of global interest, since transient processes, of both tectonic and non-tectonic origin, can play an important role during the earthquake cycle, increasing/decreasing the seismicity rates or anticipating or
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=