GNGTS 2018 - 37° Convegno Nazionale

286 GNGTS 2018 S essione 2.1 6. The inundation process is simulated by applying a modified version of the “energy method” proposed by Kriebel et al. (2017), allowing for the reconstruction of maximum inundation depths along preselected onshore transects, starting from the wave height at the coastline. In this paper we show and discuss the application of the above methodology to the area of the Gulf of Gela (southern Sicily), where a significant hazard exists for tsunamis generated by both earthquakes and landslides. References Di Bucci D.,Antoncecchi I., Ciccone F., Teofilo G., Terlizzese F.,ArgnaniA., Ligi M., Rovere M., Basili R., Coltelli M., Lorito S., Borzi B., Germagnoli F., Di Ludovico M., Lignola G.P., Prota A.; 2017: The SPOT project (potentially triggerable offshore seismicity and tsunamis): a first appraisal of the possible impact of oil and gas platforms on the seismic and tsunami risks along the Italian coasts. Geoingegneria Ambientale e Mineraria, 152, 3, 132-138. EMODnet Bathymetry Consortium; 2018: EMODnet Digital Bathymetry (DTM) . DOI 10.12770/18ff0d48-b203- 4a65-94a9-5fd8b0ec35f6. Gailler A, Hébert H, Schindelé F, Reymond D (2018) Coastal amplification laws for the french tsunami warning center: Numerical modeling and fast estimate of tsunami wave heights along the French riviera. Pure and Applied Geophysics 175(4):1429–1444, DOI 10.1007/s00024-017-1713-9. Istituto Nazionale di Statistica (ISTAT); 2015: Sezioni di censimento litoranee . https://www.istat.it/it/archivio/137341. Kriebel D. L., Lynett P. J., Cox D. T., Petroff C. M., Robertson I. N. and Chock G. Y. K.; 2017: Energy method for approximating energy overland tsunami flows . J. Waterway, Port, Coastal, Ocean Eng., 143(5), DOI 10.1061/ (ASCE)WW.1943-5460.0000393. Lorito S, Selva J, Basili R, Romano F, Tiberti M, Piatanesi A (2014) Probabilistic hazard for seismically induced tsunamis: accu- racy and feasibility of inundation maps. Geophysical Journal International 200(1):574–588, DOI 10.1093/gji/ggu408. Løvholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H (2012) Tsunami hazard and exposure on the global scale. Earth- Science Reviews 110(1):58 – 73, DOI 10.1016/j.earscirev. 2011.10.002. Mac as J, Castro MJ, Ortega S, Escalante C, González-Vida JM (2017) Per- formance benchmarking of tsunami-hysea model for NTHMP’s inundation mapping activities. Pure and Applied Geophysics 174(8):3147–3183, DOI 10. 1007/s00024-017-1583-1. Okada Y.; 1992: Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am., 82(2), 1018-1040. Selva J, Tonini R, Molinari I, Tiberti MM, Romano F, Grezio A, Melini D, Piatanesi A, Basili R, Lorito S (2016) Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA). Geophysical Journal International 205:1780–1803, doi:10.1093/gji/ggw107. Tinti S., Bortolucci E. and Vannini C.; 1997: A block-based theoretical model suited to gravitational sliding . Nat Hazards, 16 , 1–28. Tinti S. and Tonini R.; 2013: The UBO-TSUFD tsunami inundation model: validation and application to a tsunami case study focused on the city of Catania, Italy . Nat. Hazards Earth Syst. Sci., 13 , 1795–1816. Zaniboni F., Armigliato A. and Tinti S.; 2016: A numerical investigation of the 1783 landslide-induced catastrophic tsunami in Scilla, Italy . Nat Hazards, 84 , S455–S470.

RkJQdWJsaXNoZXIy MjQ4NzI=