GNGTS 2018 - 37° Convegno Nazionale

GNGTS 2018 S essione 2.1 309 Bindi, D., F. Pacor, L. Luzi, R. Puglia, M. Massa, G. Ameri, & R. Paolucci (2011). Ground motion prediction equations derived from the Italian strong motion database. Bull Earthquake Eng, 9(6) , 1899–1920, doi:10.1007/ s10518- 011-9313-z. Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., & Augliera, P. (2014). Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %- damped PSA at spectral periods up to 3.0 s using the RESORCE dataset (Vol. 12, p. 391, 2014). B. Earthq. Eng., 12 , 431–448, 2014. Cauzzi, C., E. Faccioli, M. Vanini, & A. Bianchini (2015). Updated predictive equations for broad-band (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthquake Eng , doi:10.1007/s10518-014-9685-y. Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., et al. (2017). The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismological Research Letters , 88 (3), 757–771. https://doi.org/10.1785/0220160221 Civico, R., Pucci, S., Villani, F., Pizzimenti, L., De Martini, P. M., Nappi R., & the Open EMERGEO Working Group. (2018) Surface ruptures following the 30 October 2016 M w  6.5 Norcia earthquake, central Italy.  Journal of Maps, 14:2 , 151-160, DOI: 10.1080/17445647.2018.1441756Cornell, C.A. (1968) Engineering Seismic Risk Analysis. Bull Seism Soc Am 58 , No. 5, 1583-1606. Frankel A.; 1995: Simulating strong motions of large earthquakes using recordings of small earthquakes: the Loma Prieta mainshock as a test case . Bulletin of the Seismological Society of America, 85(4) , 1144–1160. Galli, P., Galderisi, A., Peronace, E., Giaccio, B., Hajadas, I., Messina, P., & Polpetta, F. (2017). Quante volte figliola? Confessioni sibylline di una giovane faglia. GNGTS, volume 36, 41-45, ISBN: 978-88-940442-8-7 Lanzano, G., Luzi, L., Rotondi, R., Varini, E., & Marzocchi, W. (2017). Selection and ranking of the ground motion prediction equations for the new Italian hazard map (MPS16). GNGTS, volume 36, 282-285, ISBN: 978-88- 940442-8-7 Matthews, M. V., Ellsworth, W. L., & Reasenberg, P. A. (2002). A Brownian model for recurrent earthquakes, Bull. Seismol. Soc. Am. 92 , 2233–2250. Meletti, C., Visini, F., D’Amico, V., & Rovida, A. (2016). Seismic hazard in Central Italy and the 2016 Amatrice earthquake. Annals of Geophysics, DOI: 10.4401/AG-7248. Pagani, M., D. Monelli, G. Weatherill, L. Danciu, H. Crowley, V. Silva, P. Henshaw, L. Butler, M. Nastasi, L. Panzeri, M. Simionato, and D. Vigano (2014), OpenQuake-engine: An open hazard (and risk) software for the Global Earthquake Model, Seismological Research Letters, 85(3): 1-13. Pagliaroli, A., & Lanzo, G. (2008). Selection of real accelerograms for the seismic response analysis of the historical town of Nicastro (Southern Italy) during the March 1638 Calabria earthquake. Engineering Structures , 30 (8), 2211–2222. https://doi.org/10.1016/j.engstruct.2007.06.002 Rovida, A., Locati, M., Camassi, R., Lolli, B., & Gasperini P. (2016). CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes, Istituto Nazionale di Geofisica e Vulcanologia, https://doi.org/10.6092/INGV. IT-CPTI15 Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G. M., & Boschi, E. (2011). Seismic hazard assessment (2003-2009) for the Italian building code. Bulletin of the Seismological Society of America , 101 (4), 1885–1911. https://doi.org/10.1785/0120100130 Valentini, A., Visini, F., & Pace, B. (2017). Integrating faults and past earthquakes into a probabilistic seismic hazard model for peninsular Italy. Natural Hazards and Earth System Sciences , 17 (11), 2017–2039. https://doi. org/10.5194/nhess-17-2017-2017 COMPARISON OF TWO CLUSTERING ALGORITHMS FOR THE CHARACTERIZATION OF EARTHQUAKE CLUSTERS E. Varini 1 , A. Peresan 2 , R. Rotondi 1 , S. Gentili 2 1 Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”, CNR. Milano, Italy 2 National Institute of Oceanography and Experimental Geophysics. CRS-OGS, Udine, Italy Earthquake clusters are prominent in the spatio-temporal distribution of any seismic catalog; they commonly show different patterns and complexities that are deemed to be strictly inherent to the physical properties of the seismic region. Identification and characterization of earthquake clusters are challenging and important tasks in order to disclose the underlying

RkJQdWJsaXNoZXIy MjQ4NzI=