GNGTS 2018 - 37° Convegno Nazionale

52 GNGTS 2018 S essione 1.1 Galadini F. and Galli P.; 2003: Paleoseismology of silent faults in the Central Apennines (Italy): The Mt. Vettore and Laga Mts faults. Annals Geophysics, 46, pp.815-836. Ge.Mi.Na (Geomineraria Nazionale); 1963: Il bacino di Castelluccio di Norcia . Ligniti e Torbe dell’Italia continentale. Industria Libraria Tipografica Editrice (ILTE), Torino, pp. 207–210. Griffin, W.P.; 1949: Residual gravity in theory and practice . Geophysics, 14 , pp. 39-56. Gupta, V.K. and Ramani, N.; 1980: Some aspects of regional-residual separation of gravity anomalies in Precambrian terrain . Geophysics, 45 , pp. 1412-1426. Hearst, R.B. and Morris, W.A.; 2001: Regional gravity setting of the Sudbury structure . Geophysics 66 , 1680–1690. Kurian, P.J., Radhakrishna, M., Nambiar, C.G. and Murthy, B.V.S.; 1999: Interpretation of gravity field over the Perinthatta anorthosite, northern Kerala . Jour. Geol. Soc. India, 54 , pp. 483-490. Mallick K. and Sharma K.K.; 1999: A finite element method for computation of the regional gravity anomaly . Geophysics 64 , pp. 461–469. Mostardini F. and Merlini S.; 1986: Appennino centro-meridionale: sezioni geologiche e proposta di modello strutturale. AGIP , 73° Congr. Soc. Geol. Ital., Roma. Nettleton, L.L.; 1976: Gravity and Magnetics in Oil Prospecting . McGraw-Hill Book Co.. Pawlowsky R.S. and Hansen R.O.; 1990: Gravity anomaly separation by Wiener filtering. Geophysics, 55 , 539–548. Pawlowski, R.S.; 1994: Green’s equivalent-layer concept in gravity band-pass filter design . Geophysics, 59 , pp. 69- 76. Pierantoni P., Deiana G. and Galdenzi S.; 2013: Stratigraphic and structural features of the Sibillini mountain (Umbria-Marche- Appennines, Italy). Ital. J. Geosci. (Boll. Soc. Geol. It.), 132 , 3, pp. 497-520. Ruano P., Rustichelli A., Galindo-Zaldívar J., Piccard L., Ruiz-Constán A., Tondi E., Pedrera A.C., López-Garrido A., Sanz de Galdeano C. and Agosta F.; 2012: Anomalías gravimétricas y relleno sedimentario relacionado con la actividad de fallas: un ejemplo de los Apeninos centrales . Geo Temas, 13 , pp. 1539–1542. Simpson S.M.; 1954: Least- squares polynomial fitting to gravitational data and density plotting by digital computer . Geophysics, 19 , 808–811. Talwani M., Worzel J. L. and Landisman M.; 1959: Rapid Gravity Computations for twodimensional bodies with application to the Mendocine Submarine Fracture Zone . J. Geophysical Research, 64 , pp. 49-61. Villani F. and Sapia V.; 2017: The shallow structure of a surface-rupturing fault in unconsolidated deposits from multi- scale electrical resistivity data: The 30 October 2016 Mw 6.5 central Italy earthquake case study. Tectonophysics, 717 , pp. 628-644. doi.org/10.1016/j.tecto.2017.08.001. THE CAMPOTOSTO SEISMIC GAP IN BETWEEN THE 2009 AND 2016–2017 SEISMIC SEQUENCES OF CENTRAL ITALY AND THE ROLE OF INHERITED LITHOSPHERIC FAULTS IN REGIONAL SEISMOTECTONIC SETTINGS E. Falcucci 1 , S. Gori 1 , C. Bignami 1 , G. Pietrantonio 1 , D. Melini 1 , M. Moro 1 , M. Saroli 2,1 , F. Galadini 1 1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 2 Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino, Italy The 2016-2017 seismic sequence, in central Italy, was caused by the activation of the Mt. Vettore-Mt. Bove active fault and of the Amatrice fault, which generated three mainshocks on 24 August, 26 October and 30 October 2016, the latter being the largest one (Mw 6.5; Chiaraluce et al. , 2017). On 18 January 2017, four Mw 5-5.5 seismic events nucleated south of the Mt. Vettore-Mt. Bove fault, where the Campotosto active fault is located. This structure is considered as potentially responsible for M ~6.6 seismic events and a major seismic gap of the central Apennines (Galadini and Galli, 2003). The fault was also responsible for some moderate seismic events during the 2009 L’Aquila seismic sequence, the largest of which of Mw 5.2 on 9 April 2009 (Valoroso et al. , 2013). In the present study, we investigated the January 2017 events through GPS and DInSAR coseismic data. We defined that they occurred along the Campotosto fault, with a slip distribution on the fault plane that roughly spans 3-9 km depth (Fig. 1A). The retrieved 3D fault

RkJQdWJsaXNoZXIy MjQ4NzI=