GNGTS 2018 - 37° Convegno Nazionale
646 GNGTS 2018 S essione 3.2 gravelly, clayey and rocky soils) clearly return back different GPR signatures, characterized for example by alternated strong reflections and attenuated signal, or/and diffraction patterns. The processed data show in some cases very clear high-resolution reflectors with variable dip, displaying geologic features typical of the wadi riverbed. Even if we are not yet able to unambiguously distinguish the presence of water, the data clearly display alluvial structures that could guide future astronauts to dig, from a geological point of view, in the most proper sites with higher probability to find water. Considering the recent discovery of liquid water beneath the surface of Mars (Orosei et al. , 2018), such missions are strategic to look ahead for developing techniques to be used, by the future explorers, on the Martian surface to inspect its buried subsurface. Acknowledgments. Thanks to the AMADEE-18 field crew, space dreamers whose passion and efforts contributed to the experiment success. Authors also thank the Italian Radio Amateur Association (ARI) and their president Francesco Orfei IZ0ABD, due to their support provided in the GPR equipment optimization in laboratory during the mission preparation. References Ciarletti V., Clifford S., Plettemeier D., Le Gall A., Hervé Y., Dorizon, S. Quantin-Nataf C., Benedix W.S., Schwenzer S., Pettinelli E., Heggy E., Herique A., Berthelier J.J., Kofman W., Vago J.L., Hamran S.E. and the WISDOM Team; 2017: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling , Astrobiology, 17(6-7), 565-584. Ercoli M., Di Matteo L., Pauselli C., Mancinelli P., Frapiccini S., Talegalli L., Cannata A.; 2018: Integrated GPR and laboratory water content measures of sandy soils: From laboratory to field scale, Constr. & Build. Mat., 159, 734-744, doi: 10.1016/j.conbuildmat.2017.11.082. Groemer G.; 2014: Simulating Mars on Earth. Astrobiology, 14(5):357–359. doi: 10.1089/ast.2014.1402. Jol H.M; 2009: Ground Penetrating Radar: Theory and Applications , Elsevier. doi: 10.1016/B978-0-444-53348- 7.00007-7 Orosei R., Lauro S. E., Pettinelli E., Cicchetti A., Coradini M., Cosciotti B., Di Paolo F., Flamini E., Mattei E., Pajola M., Soldovieri F., Cartacci M., Cassenti F., Frigeri A., Giuppi S., Martufi R., Masdea A., Mitri G., Nenna C., Noschese R., Restano M., Seu R; 2018: Radar evidence of subglacial liquid water on Mars. Science, 361, 6401, 490-493, doi: 10.1126/science.aar7268. Snook K.J. and Mendell W.W.; 2004: The need for analogue missions in scientific human and robotic planetary missions , XXXV Lunar Planet. Sci. Conf., Abstr. #2130, 15-19 Mar, Houston, Texas (US). Rossi A.P., Unnithan V., Torrese P., Borrmann D., Nuechter A., Lauterbach H., Ortenzi G., Jaehrig T. and Soh F.; 2018: Augmented field Geology and Geophysics for Planetary Analogues. Geophysical Research Abstracts, 20, EGU2018-6389, European Geophysical Union (EGU), 8-13 April, Vienna, Austria. THE UNDERSEA MALTA - GOZO TUNNEL PROJECT: GEOPHYSICAL INVESTIGATIONS L. Facchin 1 , L. Petronio 1 , F. Zgur 1 , L. Baradello 1 , M. Deponte 1 , E. Forlin 1 , F. Coren 1 , R. Blanos 1 , E. Gordini 1 , R. Romeo 1 , A. Affatato 1 , P. Paganini 1 , A. Pavan 1 , D. Cotterle 1 , G. Visnovic 1 , A. Barbagallo 1 , G. Cristofano 1 , P. Galea 2 , S. Pace 3 , A. Micallef 2 , D. Spatola 3 1 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy 2 University of Malta 3 Transport Malta Introduction. Between the autumn of 2016 and the winter 2017-2018 OGS and the University of Malta carried out a series of geophysical investigations in the Gozo Channel (Malta). These surveys are part of the study commissioned by the Ministry of Transport and Infrastructure of Malta to evaluate the feasibility of an undersea tunnel between the islands of
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=