GNGTS 2018 - 37° Convegno Nazionale
GNGTS 2018 S essione 3.2 677 Acknowledgements. This work has been funded by “Fondo di Ricerca di Base 2017 Resp. Pauselli Cristina, POR FESR 2014-2020. Asse I Azione 1.3.1 – “Avviso a sostegno delle nuove PMI innovative 2016”- Projec title: “Sviluppo tecniche/protocolli innovativi nel campo dell’acquisizione dati geofisici“ Resp. Geosurveys Srls, )” and ”Progetto ricerca di base 2014, Resp. Lucio Di Matteo”. References Di Matteo L., Bigotti F., Ricco R.; 2009: Best-fit models to estimate modified proctor properties of compacted soil , J. Geotech. Geoenvironmental Eng., 135 , 2009, 992–996. Di Matteo L., Pauselli C., Valigi D., Ercoli M., Rossi M., Guerra G., Cambi C., Ricco R., Vinti G.; 2017: Reliability of water content estimation by profile probe and its effect on slope stability , Landslides, 15 (1), 1–8. Dobriyal P., Qureshi A., Badola R., Hussain S.A.; 2012: A review of the methods available for estimating soil moisture and its implications for water resource management , J. Hydrol., 458–459, 110–117. Ercoli M., Di Matteo L., Pauselli C., Mancinelli P., Frapiccini S., Talegalli L., Cannata A.; 2018a: Integrated GPR and laboratory water content measures of sandy soils: From laboratory to field scale . Construction and Building Materials, 159 , 734-744. Ercoli M., Di Matteo L. and Pauselli C.; 2018b: Comparison of GPR and Capacitance Probe laboratory experiments in sandy soils , 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, 1-5. doi: 10.1109/ICGPR.2018.8441567. Evett S.R., Heng L.K., Moutonnet P., Nguyen M.L. (Eds.); 2008: Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation, and Sensor Technology. IAEA-TCS-30, 1018-5518, International Atomic Energy Agency, Vienna, Austria, 39–54 (Chapter 3) Available at: <http://www-pub. iaea.org/mtcd/publications/ PubDetails.asp?pubId=7801>. Qi Z., Helmers M. J.; 2010: The conversion of permittivity as measured by a PR2 capacitance probe into soil moisture values for Des Moines lobe soils in Iowa , 26, 82–92. Reid M.E., Baum R.L., LaHusen R.G., Ellis W.L., 2008: Capturing landslide dynamics and hydrologic triggers using near-real-time monitoring. In: Chen et al (eds) landslides and engineered slopes. Taylor & Francis Group, London,. 179–191. THE MALTA - GOZO TUNNEL PROJECT: ONSHORE BOREHOLE AND SURFACE SEISMIC SURVEY IN SUPPORT TO THE GEOLOGICAL MODEL BUILDING L. Petronio 1 , A. Affatato 1 , L. Baradello 1 , A. Barbagallo 1 , G. Cristofano 1 , P. Galea 2 , S. Pace 3 , L. Di Marzo 4 , R. Scauzilli 4 1 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS Italy 2 University of Malta 3 Transport Malta 4 Geotec Spa, Italy In the frame of the Malta and Gozo tunnel project, OGS collected several geophysical data to provide new information for a more reliable geological model along the planned tunnel trajectory (Petronio et al. , 2017). The geophysical survey was planned: to identify and map the main geological and geomorphological features, to characterize the nature, thickness and spatial variability of geological formations below the seafloor, and to identify the main faults. The stratigraphy of the Maltese islands consists of five geological formations, ranging in age from late Oligocene to late Miocene: Lower Coralline Limestone Formation, Globigerina Limestone Formation, Blue Clay Formation, Greensand Formation and Upper Coralline Limestone Formation (Galea, 2007). The rock layers in Malta are relatively flat-lying, with the exception of zones where the rock has been folded close to faults. The faults have two main orientations, with the largest faults being northwest-southeast trending, parallel to the line of islands, although these faults are only locally exposed, and a second set that are WSW-ENE trending, with generally small displacements that dominate the topography of the islands.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=