GNGTS 2018 - 37° Convegno Nazionale

GNGTS 2018 S essione 3.3 741 the variability of dynamic parameters associated to incoming vibrations on the monitored rock mass during time, the damping coefficient associated to each event was derived for some frequencies of interest. Subsequently, the values obtained for the considered frequencies (30, 50, 100, 200, 500, 1000 Hz) were averaged for each day in order to be compared. Even if no relevant fluctuations have been observed in the analysed dataset, since at the Acuto quarry there are only weak external actions mainly referable to temperature ranges and wind intensity that does not facilitate the detection of variations in damping values, it is deemed that the analysis performed can be applied in environments characterised by frequent and intense vibrations. Future perspectives. The application of damping analysis over time for those rock masses subjected to recurrent and intense external vibrations, as those located in proximity of the infrastructures, could show a variation in damping coefficient estimated, thus indicating a changing in the dynamical behaviour of the monitored system, which could be related to microfracturing processes occurring in the rock mass. For this reason, another dataset acquired on a rock mass located along a railway line will be treated with the presented tool, by taking in account the different typologies of train transited and the different environmental conditions occurred on site. Acknowledgments. The Authors wish to thank the Municipality of Acuto for the authorization provided to the experimental activities carried out at the abandoned quarry. The research was carried out in the framework of the project “ Rock failures in cliff slopes: from back- to forward-analysis of processes through monitoring and multi- modelling approaches ” (University of Rome “Sapienza”—Year 2016, P.I. Prof. Salvatore Martino) References Colombero C., Comina D., Vinciguerra S., Benson P.M.; 2018: Microseismicity of an unstable rock mass: From field monitoring to laboratory testing. Journal of Geophysical Research: Solid Earth, 123 , 1673–1693. https://doi. org/10.1002/2017JB014612 Fantini A., Fiorucci M., Martino S., Marino L., Napoli G., Prestininzi A., Salvetti O., Sarandrea P., Stedile L.; 2016: Multi-sensor system designed for monitoring rock falls: the experimental test-site of Acuto (Italy). Rendiconti Online della Società Geologica Italiana, 41 , 147-150. Fantini A., Fiorucci M., Martino S.; 2017: Rock Falls Impacting Railway Tracks: Detection Analysis through an Artificial Intelligence Camera Prototype. Wireless Communications and Mobile Computing, vol. 2017, Article ID 9386928, 11 pages, 2017. doi:10.1155/2017/9386928 Loew S., Gschwind S., Gischig V., Keller-Signer A., Valenti G.; 2016: Monitoring and early warning of the 2012 Preonzo catastrophic rockslope failure. Landslides,  14 , 141–154. Spillmann T., Maurer H., Green A.G., Heincke B., Willenberg H., Husen S.; 2007: Microseismic investigation of an unstable mountain slope in the Swiss Alps. Journal of Geophysical Research, 112 . ANALISI MULTISCALA DI CAMPI DI POTENZIALE A QUOTE SATELLITARI F. De Falco, M. Milano, M. Fedi Università di Napoli “Federico II”, Napoli, Italy Lo scopo di questo lavoro è stato lo sviluppo di un algoritmo per l’analisi di dataset magnetici e gravimetrici di origine satellitare attraverso un approccio multiscala al fine di ottenere informazioni sulla posizione di sorgenti profonde. È noto come l’intensità e la risoluzione di un’anomalia sia legata fortemente alla quota di acquisizione del dato, poiché esiste una relazione diretta tra l’altezza d’indagine rispetto alla superficie terrestre e la profondità d’esplorazione. In altre parole, se consideriamo le variazioni di un campo di potenziale allontanandoci o avvicinandoci dalla superficie terrestre, si nota come i contributi delle singole sorgenti cambino al variare dell’altezza di acquisizione, risultando, quelli legati a sorgenti superficiali, più visibili

RkJQdWJsaXNoZXIy MjQ4NzI=