GNGTS 2019 - Atti del 38° Convegno Nazionale

GNGTS 2019 S essione 1.3 203 2015). This aspect confirms that a large amount of the deformation affecting the eastern flank occurs in aseismic mode, in agreement with field observations (Rasà et al. , 1996). References Azzaro R., D’Amico S. and Tuvè T.; 2015: Seismic hazard assessment in the volcanic region of Mt. Etna (Italy): a probabilistic approach based on macroseismic data applied to volcano-tectonic seismicity . Bull. Earth. Eng., DOI 10.1007/s10518-015-9806-2. Böhm J., Werl B. and Schuh H.; 2006: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data . JGR 111, B02406, DOI 10.1029/2005JB003629. Borgia A., Ferrari L. and Pasquarè G.; 1992: Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna . Nature 357, 231–235, DOI 10.1038/357231a0. Branca S. and Ferrara V.; 2013: The morphostructural setting of Mount Etna sedimentary basement (Italy): implications for the geometry and volume of the volcano and its flank instability . Tectonophysics 586, 46–64, DOI 10.1016/j.tecto.2012.11.011. Dragert H., Wang K. and Rogers G.; 2004: Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone . Earth Planets Space 56 (12), 1143–1150, DOI 10.1186/BF03353333. Gross F., Krastel S., Geersen J., Behrmann J. H., Ridente D., Chiocci F. L., Bialas J. P., Papenberg C., Cukur D., Urlaub M. and Micallef A.; 2015: The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high resolution 2D seismic data . Tectonophysics, DOI 10.1016/j.tecto.2015.11.011. Lo Giudice E. and Rasà R.; 1992: Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as an example . Tectonophysics 202, 257–268, DOI 10.1016/0040-1951(92)90111-I. Okada Y.; 1985: Surface deformation due to shear and tensile fault in half-space . Bull. Seismol. Soc. Am. 75, 1135– 1154. Palano M., Rossi M., Cannavò F., Bruno V., Aloisi M., Pellegrino D., Pulvirenti M., Siligato G. and Mattia M.; 2010: Etn@ref: a geodetic reference frame for Mt. Etna GPS networks . Annals of Geophysics, 53, 4, DOI 10.4401/ ag-4879. Palano M.; 2016: Episodic slow slip events and seaward flank motion at Mt. Etna volcano (Italy) . JVGR, 324, 8-14, DOI 10.1016/j.jvolgeores.2016.05.010. Rasà R., Azzaro R. and Leonardi O.; 1996: Aseismic creep on faults and flank instability at Mount Etna volcano, Sicily . Geol. Soc., Spec. Pub. 110 (1), 179-192, DOI 10.1144/GSL.SP.1996.110.01.14. Rubin A. M.; 2011: Designer friction laws for bimodal slow slip propagation speeds . Geochem. Geophys. Geosyst. 12, Q04007, DOI 10.1029/2010gc003386. Saastamoinen J.; 1972: Contribution to the theory of atmospheric refraction . Bulletin Géodésique 105 (1), 279-298, DOI 10.1007/BF02521844. Segall P., Rubin A. M., Bradley A. M. and Rice J. R.; 2010: Dilatant strengthening as a mechanism for slow slip events . J. Geophys. Res. 115, B12305, DOI 10.1029/2010jb007449. Tibaldi A. and Groppelli G.; 2002: Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin . J. Volcanol. Geotherm. Res. 115, 277–302, DOI 10.1016/S0377-0273(01)00305-5. NUMERICAL COMPUTATIONS OF GEOPHYSICAL PARAMETERS ASSOCIATED TO GEOTHERMAL ACTIVITY S.C. Stissi 1 , G. Currenti 1 , G. Montegrossi 2 , R. Napoli 1 1 Istituto Nazionale di Geofisica e Vulcanologia, Catania, Italy 2 CNR-IGG, Firenze, Italy In this work we illustrate the integrated modeling assessment of various induced geophysical changes in a volcano-hydrothermal system. Continuous observations of ground deformation, gravity and geomagnetic changes have been generally carried out on many active volcanoes (e.g. Bonforte et al. 2008; Napoli et al. , 2008; Currenti et al. , 2009; 2014) to detect the modifications of the stress field and of thermodynamic state related to the magmatic system preceding and

RkJQdWJsaXNoZXIy MjQ4NzI=