GNGTS 2019 - Atti del 38° Convegno Nazionale

210 GNGTS 2019 S essione 1.3 Fig. 2 - Examples of melt embayments and their respective H 2 O profile compositions measured through Raman spectroscopy for each selected eruption: a) February 19, 2013 eruption; b) December 3, 2015 eruption; c) December 24, 2018 eruption. wt.% and gradual decrease towards to the end of the embayments (Fig. 2). At present, we are finalizing the CO 2 collection in melt inclusions in order to better constrain the degassing path for each eruptive episode. This operation is fundamental for constraining the initial conditions (i.e. temperature, pressure and volatile composition) for the application of the numerical modeling, and thus evaluating the difference in ascent rates for the eruptive episodes selected. Additionally, measurements of CO 2 and S in embayments allow us to employ a modeling of multiple volatile species, in order to obtain more estimates of ascent rates in different steps, covering a range of depth in function of the solubility of the volatile species. References Behncke B., Branca S., Corsaro R.A., De Beni E., Miraglia L. and Proietti C.; 2014: The 2011–2012 summit activity of Mount Etna: birth, growth and products of the new SE crater, J. Volcanol. Geotherm. Res., 270, 10–21. Cannata A., Di Grazia G., Giuffrida M., Gresta S., Palano M., Sciotto M., Viccaro M. and Zuccarello F.; 2018: Space-time evolution of magma storage and transfer at Mt. Etna volcano (Italy): The 2015–2016 reawakening of Voragine crater, Geochem. Geophys., 19, 471–495. Cannavo’ F., Sciotto M., Cannata A. and Di Grazia G.; 2019: An integrated geophysical approach to track magma intrusion: the 2018 christmas eve eruption at Mount Etna. Geophys. Res. Lett., 46, 19, 8009-80017. Coltelli M., Del Carlo P. and Vezzoli L.; 1998: Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy, Geology, 26,1095–1098. Costa F., Dohmen R. and Chakraborty S.; 2008: Time scales of magmatic processes from modeling the zoning patterns of crystals, Rev. Mineral. Geochem., 69, 545–594. Giuffrida M. and Viccaro M.; 2017: Three years (2011–2013) of eruptive activity at Mt. Etna: Working modes and timescales of the modern volcano plumbing system from microanalytical studies of crystals, Earth Sci. Rev., 171, 289–322. Humphreys M. C. S., Menand T., Blundy J.D. and Klimm K.; 2008: Magma ascent rates inexplosive eruptions: Constraints from H 2 O diffusion in melt inclusions, Earth Planet Sci. Lett., 270 (1-2), 25-40. Kamenetsky V.S., Pompilio M., Metrich N., Sobolev A.V., Kuzmin D.V. and Thomas R.; 2007: Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna, Geology, 35: 255M258. Liu Y., Anderson A.T. and Wilson C.J.N.; 2007: Melt pockets in phenocrysts and decompression rates of silicic magmas before fragmentation, J. Geophys. Res., 112(B6), 12. LloydA.S., Plank T., Ruprecht P., Hauri E.H., Rose W. and Gonnermann H.M.; 2014: NanoSIMS results from olivine- hosted melt embayments: Magma ascent rate during explosive basaltic eruptions, J. Volcanol. Geotherm. Res., 283, 1-18. Zellmer G. F., Blake S., Vance D., Hawkesworth C. and Turner S.; 1999: Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematic, Contrib. Mineral. Petrol., 136, 345–357.

RkJQdWJsaXNoZXIy MjQ4NzI=