GNGTS 2019 - Atti del 38° Convegno Nazionale

216 GNGTS 2019 S essione 1.4 can be the effect of the poor quality of the CRUST1.0 data in this region [see Eshagh et al. (2017)]. The comparisons performed in this work prove that further analyses are needed to come to a better consistency between gravity and seismic derived Moho depths in Iran before computing any joint seismic/gravimetric estimate. References Albertella, A., F. Migliaccio and F. Sansò (2002). GOCE: the earth gravity field by space gradiometry, Celestial Mechanics and Dynamical Astronomy, 83 (1-4), 1-15. Anderson, D.L. (1989). Theory of the Earth, Blackwell Scientific Publication, Boston-Oxford-London Edinburgh- Melbourne. Barzaghi, R., Gandino A., Sansò F. and Zenucchini C. (1992). The collocation approach to the inversion of gravity data, Gephysical Prospecting, 40, 429-451. Ebadi, S., Barzaghi, R., Safari, A., Bahroudi,A. (2019). Evaluation of different gravimetric methods to Moho recovery in Iran. Annals of Geophysics, vol. 62 Eshagh, M., M. Bagherbandi and L. Sjöberg (2011). Acombined global Moho model based on seismic and gravimetric data, Acta Geod. Geoph. Hung., 46 (1), 25-38. Eshagh, M., Ebadi, S. & Tenzer, R. (2017). Isostatic GOCE Moho model for Iran, Journal of Asian Earth Sciences, 138, 12-24. Jeffrey, H., 1976. The earth. Its origin, history and physical constitution, 6th edition, Cambridge, Cambridge University Press. Krarup, T. (1969) AContribution to the Mathematical Foundation of Physical Geodesy, Meddelelse no. 44, Geodætisk Institut, København. Lebedev, S., J.M.-C. Adam and T. Meier (2013). Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies, Tectonophysics; http://dx.doi.org/10.10 16/j.tecto.2012.12.030. Moritz, H. (1989). The figure of the Earth: theoretical geodesy and the Earth’s interior, Wichmann, Karlsruhe. Parker, R.L. (1972). Geophys. J. R. Astr. Soc., 31, 447-455. Pavlis, N.K., and R.H. Rapp (1990). The development of an isostatic gravitational model to degree 360 and its use in global gravity modeling, Geophys. J. Int., 100, 369-378. Reigber, C., R. Casper and W. Päffgen (1999). The CHAMP Geopotential Mission, IAA2nd International Symposium on Small Satellites for Earth Observation (Berlin, April 12-16), 25-28. Shin, Y.M., H. Xu, C. Braitenberg, J. Fang and Y. Wang (2007). Moho undulations beneath Tibet from GRACE- integrated gravity data, Geophys. J. Int., 170 (3), 971-985. Sjöberg, L.E. (2009). Solving Vening Meinesz-Moritz inverse problem in isostasy, Geophysical Journal International, 179, 1527-1536. Tapley, B.D., S. Bettapur, M. Watkins and C. Reigber (2004). The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31 (9), L09607. Turcotte, D.L., and G. Schubert (1982). Geodynamics: applications of continuum physics to geological problems, John Wiley&Sons. ANTHROPIC EFFECTS ON UNDERGROUND FLUIDS AND VERTICAL GROUND MOVEMENTS M. Nespoli 1 , N. Cenni 2 , M. Marcaccio 3 , M.E. Belardinelli 1 1 Dipartimento di Fisica ed Astronomia - Università di Bologna, Italy 2 Dipartimento di Geoscienze - Università di Padova, Italy 3 Arpa Emilia Romagna, Direzione Tecnica, Bologna, Italy The land subsidence phenomena in the Po plain area (Fig. 1) is widely documented (e.g. Bitelli et al. 2000; Baldi et al. 2009, 2011, Cenni et al. 2013, 2015, Stramondo et al. 2011, Teatini et al. , 2006, 2011) and it is due to the combination of natural causes and anthropogenic activities. Natural movements are originated from the North Apennine thrust belt activity, loading and compaction of alluvional soil, and post-glacial rebound. Anthropogenic causes mainly consist in the overexploitation of the aquifers and oil extraction. After the end of the

RkJQdWJsaXNoZXIy MjQ4NzI=