GNGTS 2019 - Atti del 38° Convegno Nazionale

GNGTS 2019 S essione 2.1 303 applicata per ottenere le relazioni empiriche dirette e inverse tra l’intensità e i valori medi di LogPGV e LogPSA per periodi T=0.3s, 1.0s, 2.0s (Tab.1a, Tab.1b). Bibliografia Caprio M., Tarigan B., Worden C.B., Wiemer S., and Wald D.J., 2015. Ground motion to intensity conversion equations (GMICEs): A global relationships and evaluation of regional dependency, Bull. Seismol. Soc. Am ., 105:3:1476-1490. Cua G., Wald D.J., Allen T.I., Garcia D., Worden C.B., Gerstenberger M., Lin K., Marano K., 2010. Best Practices for Using Macroseismic Intensiy and Ground Motion Intensity Conversion Equations for Hazard and Loss Models in GEM1. GEM Technical Repport 2010-4, GEM Foundation, Pavia, Italy, 59p. Faccioli E. and Cauzzi C., 2006. Macroseismic intensities for seismic scenarios estimated from instrumentally based correlations, Proc. First European Conference on Earthquake Engineering and Seismology, paper number 569. Faenza L. and Michelini A., 2010. Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap . Geophys. J. Int. 180:1138-1152. Faenza L. and Michelini A., 2011.Regression analysis of MCS intensity and ground motion spectral accelerations (SAs) in Italy. Geophys. J. Int. 186:1415-1430. Galli O., Peronace E. e Tertulliani A., 2016. Rapporto sugli effetti macrosismici del terremoto del 24 agosto 2016 di Amatrice in scala MCS, rapporto congiunto DPC, CNR-IGAG, INGV, 15pp. DOI: 10.5281/zenodo.16132. Gomez Capera A.A., Locati M., Fiorini E., Bazurro P., Luzi L., Massa M., Puglia R. and Santulin M., 2015. D3.1 Macroseismic and ground motion: site specific conversion rules. DPC-INGV-S2 Project “Constraining observations into Sesismic Hazard”, deliverable D3.1, 23.06.2015, Milano, 66pp. Fig. 3 - Distribuzione del set di dati di input, relative medie, mediane, barre di deviazione standard per LogPGA e intensità macrosismica. Relazione PGA=f(I), eq. (2). Fig. 2 - Distribuzione del set di dati in input, relative medie, mediane, barre di deviazione standard per LogPGA e intensità macrosismica. Relazione I=f(PGA), eq. (1). Tab. 1a - I = a EXP(b*Log(GMP)). GMP a’ b’ σ PGA -1.4464 4.1343 0.11 PGV -2.9123 4.4624 0.15 PSA0.3s -1.1321 4.0775 0.13 PSA1.0s -2.1083 4.6278 0.21 PSA2.0s -2.4453 4.3715 0.26 Tab. 1b - Log(GMP) = a’ + b’*Log(I). GMP a’ b’ σ PGA 2.2762 0.54612 0.31 PGV 4.5144 0.50231 0.36 SA0.3s 1.9444 0.55071 0.44 SA1.0s 2.9471 0.47223 0.58 SA2.0s 3.7438 0.48302 0.80

RkJQdWJsaXNoZXIy MjQ4NzI=