GNGTS 2019 - Atti del 38° Convegno Nazionale

684 GNGTS 2019 S essione 3.2 Specifically, the synthetic test shows more than 50% increase of the investigation depth, when wavelength-based weights are imposed. In the future, we will perform the wavelength-based weighted SWT on the real data. Acknowledgments. The first author would like to thank TOTAL E&P for supporting his PhD. References Bao, X., Song, X. and Li, J.; 2015: High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography., Earth and Planetary Science Letters, 417, 132-141, doi: 10.1016/j. epsl.2015.02.024 Boiero, D.; 2009: Surface wave analysis for building shear wave velocity models., PhD thesis, Politecnico di Torino. Papadopoulou, M., Da Col, F., Socco, L.V., Hu, S., Bäckström, E., Schön, M., Marsden, P. and Malehmir, A.; 2019: Surface-Wave Tomography at Mining Sites - A Case Study from Central Sweden., 25th European Meeting of Environmental and Engineering Geophysics, doi: 10.3997/2214-4609.201902464 Picozzi, M., Parolai, S., Bindi, D. and Strollo,A.; 2009: Characterization of shallow geology by high-frequency seismic noise tomography., Geophysical Journal International, 176(1), 164-174, doi: 10.1111/j.1365-246X.2008.03966.x Socco, L.V., Boiero, D., Bergamo, P. and Garofalo, F.; 2014: Surface wave tomography to retrieve near surface velocity models., SEG, doi: 10.1190/segam2014-1278.1 Socco, L.V., Foti, S. and Boiero, D.; 2010: Surface-wave analysis for building near-surface velocity models— established approaches and new perspectives, Geophysics, 75(5), A83–A102. doi: 10.1190/1.3479491 Wespestad, C.E., Thurber, C.H., Andersen, N.L, Singer, B.S., Cardona, C., Zeng, Z., Bennington, N.L., Keranen, K., Peterson, D.E., Cordell, D. Unsworth, M., Miller, C. and Jones, G.W.; 2019: Magma Reservoir Below Laguna del Maule Volcanic Field, Chile, Imaged With Surface-Wave Tomography. JGR Solid Earth, 124(3), 2858-2872, doi: 10.1029/2018JB016485. Yao, H., van der Hilst, R.D. and de Hoop, M.V.; 2006: Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – I. Phase velocity maps, Geophysical Journal International,166(2), 732- 744, doi: 10.1111/j.1365-246X.2006.03028.x A NEW MULTI-METHOD APPROACH TO MONITOR THE STRESS STATE IN A ROCK MASS: THE CASE OF SAN BENEDETTO TUNNEL, CENTRAL ITALY P. Luiso 1 , C. De Paola 1,2 , D. Di Massa 1 , D. Fiore 1 , S. Candela 1 SOCOTEC Italia Srl - registered office, Lainate, Italy 2 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi «Federico II», Naples, Italy Introduction. The combined analysis between resistivity/seismic tomographies and GPR surveys have long been used to investigate the first meters of subsoil, mainly to search and analyse lithological changes, landslides (Philips et al., 2019 and references therein) fractures (e.g. Sibula et al. , 2017), the presence of water infiltration (e.g. Yusofl et al. , 2017). In the last ten years some geophysicist used the electrical resistivity and refraction seismic tomographies (with GPR survey support) to monitoring the behaviour of the rock mass fixing electrodes in a series of close holes drilled vertically in the rock wall (Bàrta et al. , 2010; Liu et al. , 2013; Rathod et al. , 2019; Singer et al. , 2010; Tosti et al. , 2019). We here present a new methodology tested in the San Benedetto tunnel, crossed by the fault plane, that connects Norcia to Arquata del Tronto cities, on the border between Abruzzo and Molise regions, central Italy. The tunnel, damaged by the 30 October 2016 earthquake with M w 6.5 (Villani et al. , 2018) localized 4 km from Norcia (central Italy), was affected by coesismic fractures, a 10-20 cm displacement (Galli et al. , 2019) and serious damage to the concrete

RkJQdWJsaXNoZXIy MjQ4NzI=