GNGTS 2019 - Atti del 38° Convegno Nazionale

744 GNGTS 2019 S essione 3.3 It should be noted that our arrival-angle correction appears to be particularly effective for periods of 50 s and lower, at least for the data set investigated. Above 50 s we observe non- negligible differences between AN and EQ-corrected, with the latter being systematically faster; but at those periods AN signal is weaker and the AN method accordingly less reliable (e.g. Boschi and Weemstra, 2015). References Boschi, L. &Weemstra, C., 2015. Stationary-phase integrals in the cross-correlation of ambient noise , Rev. Geophys., 53, doi:10.1002/2014RG000455. Cammarano, F., Goes, S., Vacher, P., & Giardini, D., 2003. I nferring upper-mantle temperatures from seismic velocities , Phys. Earth Planet. Inter., 138(3-4), 197–222. Claerbout, J. F., 1985. Fundamentals of Geophysical Data Processing with Applications to Petroleum Prospecting , Citeseer. Darbyshire, F. A. & Lebedev, S., 2009. Rayleigh wave phase-velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton , Ontario, Geophys. J. Int., 176(1), 215–234. Diaferia, G. & Cammarano, F., 2017. Seismic signature of the continental crust: what thermodynamics says. An example from the Italian Peninsula , Tectonics, 36(12), 3192–3208. Ensing, J. X. & van Wijk, K., 2018. Estimating the orientation of borehole seismometers from ambient seismic noise , B. Seismol. Soc. Am., 109(1), 424–432. Foster, A., Ekström, G., & Nettles, M., 2013. Surface wave phase velocities of the Western United States from a two- station method , Geophys. J. Int., 196(2), 1189–1206. Kästle, E., Soomro, R., Weemstra, C., Boschi, L., & Meier, T., 2016. Two-receiver measurements of phase velocity: cross-validation of ambient-noise and earthquake-based observations , Geophys. J. Int., 207, 1493–1512. Kästle, E., El-Sharkawy, A., Boschi, L., Meier, T., Rosenberg, C. L., Bellahsen, N., Cristiano, L., & Weidle, C., 2018. Surface-wave tomography of the Alps using ambient-noise and earthquake phase-velocity measurements , J. Geophys. Res., 123, doi:10.1002/2017JB014698. Laske, G., 1995. Global observation of off-great-circle propagation of long-period surface waves , Geophys. J. Int., 123(1), 245–259. Laske, G. & Masters, G., 1996. Constraints on global phase velocity maps from long-period polarization data , J. Geophys. Res. Solid Earth, 101(B7), 16059–16075. Meier, T., Dietrich, K., Stöckhert, B., & Harjes, H.-P., 2004. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications , Geophys. J. Int., 156(1), 45–58. Press, W., Teukolsky, S., Vetterling, W., & Flannery, B., 1992. Numerical Recipes in Fortran 77 , Cambridge University Press. Stachnik, J., Sheehan, A. F., Zietlow, D., Yang, Z., Collins, J., & Ferris, A., 2012. Determination of New Zealand ocean bottom seismometer orientation via Rayleigh-wave polarization , Seismol. Res. Lett., 83(4), 704–713. Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H., 2005. High-resolution surface-wave tomography from ambient seismic noise , Science, 307(5715), 1615–1618. Soomro, R., Weidle, C., Cristiano, L., Lebedev, S., & Meier, T., 2016. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements , Geophys. J. Int., 204(1), 517–534. Yao, H., van Der Hilst, R. D., & De Hoop, M. V., 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps , Geophys. J. Int., 166(2), 732–744. Zhou, L., Xie, J., Shen, W., Zheng, Y., Yang, Y., Shi, H., & Ritzwoller, M. H., 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography , Geophys. J. Int., 189(3), 1565–1583.

RkJQdWJsaXNoZXIy MjQ4NzI=