GNGTS 2021 - Atti del 39° Convegno Nazionale
207 GNGTS 2021 S essione 2.1 Lachet et al., 2000, per esempio, hanno dimostrato che un importante contributo al parametro di decadimento k, è dovuto all’attenuazione anelastica data dai terreni attraversati dall’onda. I dati descritti in questo studio possono quindi fornire ulteriori informazioni adatte ad effettuare confronti con dati di natura sismologica (Chandra et al., 2015). Bibliografia ASTM (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, 2017, www.astm.org Bahrampouri, M., Rodriguez-Marek, A., & Bommer, J. J. (2019). Mapping the uncertainty in modulus reduction and damping curves onto the uncertainty of site amplification functions. Soil Dynamics and Earthquake Engineering, 126, 105091. Barani, S., Ferretti, G., & De Ferrari, R. (2020). Incorporating results from seismic microzonation into probabilistic seismic hazard analysis: An example in western Liguria (Italy). Engineering Geology, 267, 105479. Chandra, J., Guéguen, P., Steidl, J. H., & Bonilla, L. F. (2015). In situ assessment of the G–γ curve for characterizing the nonlinear response of soil: Application to the Garner Valley downhole array and the wildlife liquefaction array. Bulletin of the Seismological Society of America, 105(2A), 993-1010. Crespellani, T., & Facciorusso, J. (2010). Dinamica dei terreni per le applicazioni sismiche. Dario Flaccovio Editore. Gonzalez de Vallejo L., Ferrer M.(2011). Geological Engineering ISBN 978-0-415-41352-7, CRC Press, 700 Pages. Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves. Dimitriu, P., N. Theodulidis, P. Hatzdimitriou, and A. Anastasiadis (2001). Sediment nonlinearity and attenuation of seismic waves: a study of accelerograms from Lekas, western Greece, Soil Dyna. Earthquake Eng. 21, 63–73. Falcone, G. Acunzo, G., Mendicelli, A., Mori, F., Naso, G., Peronace, E., Porchia, A., Romagnoli, G., Tarquini, E., Moscatelli, M. (2021). Seismic amplification maps of Italy based on site-specific microzonation dataset and one-dimensional numerical approach. Engineering Geology. https://doi.org/10.1016/j. enggeo.2021.106170. Lacave-Lachet, C., P. Y. Bard, J. C. Gariel, and K. Irikura (2000). Straightforward methods to detect non-linear response of the soil: application to the recordings of the Kobe earthquake (Japan, 1995), J. Seism. 4, 161–173. Madiai, C., Renzi, S., Vannucchi, G. (2017). Geotechnical Aspects in Seismic Soil–Structure Interaction of San Gimignano Towers: Probabilistic Approach. J. Perform. Constr. Facil., 2017, 31(5). ASCE, ISSN 0887- 3828. Pagliaroli A, Moscatelli M, Scasserra G, Lanzo G, Raspa G (2015). Effects of uncertainties and soil heterogeneity on the seismic response of archaeological areas: a case study. Italian Geotechnical Journal - Rivista Italiana di Geotecnica 49:79-97 Rota, M., C. G. Lai, and C. L. Strobbia. (2011). Stochastic 1D site response analysis at a site in central Italy. Soil Dynamics and Earthquake Engineering 31, no. 4, 626-639. Yokota, K., Tsuneo Imai, andMasashi Konno. (1981) Dynamic deformation characteristics of soils determined by laboratory tests. OYO Tec. Rep 3: 13-37. Corresponding author: iolanda.gaudiosi@igag.cnr.it
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=