GNGTS 2021 - Atti del 39° Convegno Nazionale

GNGTS 2021 S essione 2.2 344 References Douglas, J. and Aochi, H. (2008) A survey of techniques for predicting earthquake ground motions for engi- neering purposes. Surveys in geophysics. 29(3):187–220. Lai, S. P. (1982) Statistical characterization of strong ground motions using power spectral density function. Bull. Seism. Soc. Am. 72(1):259-274. Lanzano, G., Luzi, L., Pacor, F., Felicetta, C., Puglia, R., Sgobba, S., & D’Amico, M. (2019) A Revised Ground‐ Motion Prediction Model for Shallow Crustal Earthquakes in Italy. Bull. Seism. Soc. Am. 109(2):525-540. Laurendeau, A., Cotton, F., & Bonilla, L. F. (2012) Nonstationary stochastic simulation of strong ground- motion time histories: Application to the japanese database. 15 WCEE Lisbon 2012. Pousse, G., Bonilla, L., Cotton, F., and Margerin, L. (2006) Nonstationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database. Bull. Seism. Soc. Am., 96(6):2103-2117. Sabetta, F., and A. Pugliese (1996) Estimation of response spectra and simulation of nonstationary earthqua- ke ground motions, Bull. Seism.Soc. Am. 86(2):337–352. Sabetta, F., Pugliese, A., Fiorentino, G., Lanzano, G., & Luzi, L. (2021). Simulation of non-stationary stocha- stic ground motions based on recent Italian earthquakes. Bulletin of Earthquake Engineering, 1-29. Stockwell, R. G., L. Mansinha, and R. P. Lowe (1996) Localization of the complex spectrum: The S transform, IEEE Trans. Signal Process. 44(4):998–1001.

RkJQdWJsaXNoZXIy MjQ4NzI=