GNGTS 2022 - Atti del 40° Convegno Nazionale
GNGTS 2022 Sessione 1.2 91 - INGV, Italy, Naples). This dataset consists of 151 thermal measurements distributed within the 2004-2021 time-interval and acquired at a depth of 0.01 m below the ground surface. Unlike satellite images, this data is only related to the Solfatara crater and allows the characterization of its thermal anomaly, as well as the areas occupied by fumaroles. As for satellite-based estimation, we apply to the ground-based measurements corrections (i) and (iii). This dataset shows a mean thermal gradient representative of the entire area of about 0.3 °C/yr, with mean temperature values approaching 90 °C at the zones occupied by fumaroles. Finally, we compare the evolution of the thermal anomalies at Solfatara crater provided by both the satellite and ground-based measurements, highlighting the role of the LST parameter in volcanic and geothermal frameworks. Indeed, the integrated use of the daytime and nighttime L8 LST datasets allows a better characterization of the thermal anomalies improving frequency of observation of thermal conditions of the surface. Although the medium spatial resolution of L8 thermal bands (100m) could be considered not appropriate to characterize fumaroles activities, we showed a good agreement between remote and ground-based thermal gradient. We remark the role of the thermal satellite data that can play for the spatial and temporal monitoring of the volcanic systems. References Caputo T., Bellucci Sessa E., Silvestri M., Buongiorno M.F., Musacchio M., Sansivero F. and Vilardo G.; 2019: Surface Temperature Multiscale Monitoring by Thermal Infrared Satellite and Ground Images at Campi Flegrei Volcanic Area (Italy) . Remote Sensing, 11, 9, 1007, DOI 10.3390/rs11091007. Castaldo R., Tizzani P. and Solaro G.; 2021: Inflating Source Imaging and Stress/Strain Field Analysis at Campi Flegrei Caldera: The 2009-2013 Unrest Episode . Remote Sensing, 13, 12, 2298, 10.3390/rs13122298. Chiodini G., Vandemeulebrouck J., Caliro S., D’Auria L., De Martino P., Mangiacapra A. and Petrillo Z.; 2015: Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera . Earth Planet. Sci. Lett., 414, 58-67, DOI 10.1016/j.epsl.2015.01.012. Jimenez-Munoz J.C., Sobrino J.A., Skokovic D., Mattar C. and Cristobal J.; 2014: Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data . IEEE Geoscience and remote sensing letters, 11, 10, 1840- 1843, DOI 10.1109/LGRS.2014.2312032. Sekertekin A. and Bonafoni S.; 2020: Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sensing, 12, 294, DOI 10.3390/rs12020294. Silvestri M., Rabuffi F., Pisciotta A., Musacchio M., Diliberto I.S., Spinetti C., Lombardo V., Collini L. and Buongiorno M.F.; 2019: Analysis of Thermal Anomalies in Volcanic Areas Using Multiscale and Multitemporal Monitoring: Vulcano Island Test Case . Remote Sensing, 11, 2, 134, DOI 10.3390/rs11020134. Silvestri M., Romaniello V., Hook S., Musacchio M., Teggi S. and Buongiorno M. F.; 2020: First comparisons of surface temperature estimations between ECOSTRESS, ASTER and Landsat 8 over Italian volcanic and geothermal areas . Remote Sensing, 12(1), 184., DOI 10.3390/rs12010184. Wang K., Jiang Q., Yu D., Yang Q., Wang L., Han T. and Xu X.; 2019: Detecting daytime and nighttime land surface temperature anomalies using thermal infrared remote sensing in Dandong geothermal prospect. Int. J. Appl. Earth Obs. Geoinformation, 80, 196-205, DOI 10.1016/j.jag.2019.03.016. Fig. 1 - Temperature of the ground surface at Campi Flegrei caldera during 2014 - 2020. Mean temperature maps estimated through (a) daytime and (b) nighttime L8 LST datasets. Grey lines indicate the topography of the area.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=