GNGTS 2022 - Atti del 40° Convegno Nazionale
GNGTS 2022 Sessione 1.2 111 of the 4 earthquakes from the inversion of the displacement source spectra in the frequency range 0.5–15.0 Hz, to infer an estimate of the radiated seismic energy. We believe that the seismological analysis of low-energy events in a volcanic environment can therefore be considered a valid support in the active monitoring of the unrest phases, together with observative monitoring systems. References Bianco F., Caliro S., Martino P. D., Orazi M., Ricco C., Vilardo G., et al.; 2022: Campi Flegrei, A Restless Caldera in a Densely Populated Area . Active Volcanoes World, 219-237. DOI 10.1007/978-3-642-37060-1_8. Boatwright J.; 1980: A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy . Bull. Seism. Soc. Am., 70, 1. Buono G., Paonita A., Pappalardo L., Caliro S., Tramelli A., and Chiodini G.; 2022: New insights into the recent magma dynamics under Campi Flegrei caldera (Italy) from petrological and geochemical evidence . J. Geophys. Res. Solid Earth, 127, e2021JB023773, DOI 10.1029/2021JB023773 Calò M. and Tramelli A; 2018: Anatomy of the Campi Flegrei caldera using Enhanced Seismic Tomography Models . Sci. Rep., 8, 16254, DOI 10.1038/s41598-018-34456-x. Carlino, S., Somma, R., Troise, C. and De Natale, G.; 2012: The geothermal exploration of Campanian volcanoes: Historical review and future development . Renew. Sust. Energ. Rev., 16(1), 1004-1030. Chiodini G., Caliro S., Avino R., Bini G., Giudicepietro F., Cesare W. D., Ricciolino P., Aiuppa A., Cardellini C., Petrillo Z., Selva J., Siniscalchi A. and Tripaldi S.; 2021: Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy) . J. Volcanol. Geoth. Res., 107245, DOI 10.1016/j.jvolgeores.2021.107245. De Siena L., Chiodini G., Vilardo G., Pezzo E. D., Castellano M., Colombelli S., et al.; 2017: Source and dynamics of a volcanic caldera unrest: Campi Flegrei , 1983-84. Sci. Rep. 7, 8099, DOI 10.1038/s41598-017-08192-7. Reasenberg P. and Oppenheimer O.; 1985: FPFIT, FPPLOT and FPPAGE; Fortran computer programs for calculating and displaying earthquake fault-plane solutions , Open-File Report 85-739, DOI 10.3133/ofr85739 Tramelli A., Godano C., Ricciolino P., Giudicepietro F., Caliro S., Orazi M., De Martino P. and Chiodini G.; 2021: Statistics of seismicity to investigate the Campi Flegrei caldera unrest . Sci. Rep. 11, DOI 10.1038/s41598-021-86506-6. Vanorio T., Virieux J., Capuano P., and Russo G.; 2005: Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera . J. Geophys. Res. Solid Earth 1978 2012 110. doi:10.1029/2004jb003102. Waldhauser F. and Ellsworth W.L.; 2000: A double-difference earthquake location algorithm: Method and application to the northern Hayward fault . Bull. Seism. Soc. Am., 90, 1353-1368. Waldhauser F.; 2001: HypoDD: A computer program to compute double-difference earthquake locations . USGS Open File Rep., 01-113. Zhu, L.; 2003: Recovering permanent displacements from seismic records of the June 9, 1994 Bolivia deep earthquake . Geophys. Res. Lett. 30, 14, DOI 10.1029/2003gl017302. Zollo A., Maercklin N., Vassallo M., Dello Iacono D., Virieux J. and Gasparini P.; 2008: Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera . Geophys. Res. Lett., 35, L12306, DOI 10.1029/ 2008GL034242.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=