GNGTS 2022 - Atti del 40° Convegno Nazionale

136 GNGTS 2022 Sessione 1.3 limitare le caratteristiche dei piani di faglia. Considerando la possibile presenza di una struttura di rotturamulti-faglia e la complessità del inquadramento tettonico dell’area studiata, riteniamo che lo studio del meccanismo sismogenetico della blind fault meriti ulteriori approfondimenti attraverso dati aggiuntivi. Riconoscimenti. Questo studio è stato finanziato da Pianeta Dinamico – Progetto Working Earth INGV-MUR. I dati di Sentinel-1 sono stati forniti attraverso il Programma Copernicus dell’Unione Europea. Tutti i set di dati generati durante e/o analizzati durante lo studio in corso sono disponibili nel repository Zenodo (10.5281/zenodo.5016812). Bibliografia Caputo, R. and Pavlides, S. (1993) Late Cainozoic geodynamic evolution of Thessaly and surroundings (central- northern Greece) . Tectonophys, 223, 339–362. Caputo, R.; Helly, B.; Pavlides, S.; Papadopoulos, G. (2006) Archaeo- and palaeoseismological investigationsin Northern Thessaly (Greece): Insights for the seismic potential of the region. Nat. Haz., 39, 195–212 Castaldo, R., de Nardis, R., De Novellis, V., Ferrarini, F., Lanari, R., Lavecchia, G., et al. (2018) Coseismic stress and strain field changes investigation through 3-D Finite Element modeling of DInSAR and GPS measurements and geological/seismological data: The L’Aquila (Italy) 2009 earthquake case study. Journal of Geophysical Research: Solid Earth, 123, 4193– 4222. https://doi.org/10.1002/2017JB014453. Cheloni, D., et al. (2017) Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data , Geophys. Res. Lett., 44, 6778– 6787, doi:10.1002/2017GL073580. Convertito V, De Matteis R, Improta L and Pino NA (2020). Fluid-Triggered Aftershocks in an Anisotropic Hydraulic Conductivity Geological Complex: The Case of the 2016 Amatrice Sequence, Italy. Front. Earth Sci. 8:541323. doi: 10.3389/feart.2020.541323. Das, S. and Kostrov, B. V. (1983) Breaking of a single asperity: Rupture process and seismic radiation. J. Geophys. Res. 88, 4277–4288. Gavrilenko, P. (2005) Hydromechanical coupling in response to earthquakes: on the possible consequences for aftershocks. Geophys. J. Int. 161, 113–129. doi: 10.1111/j.1365-246X.2005.02538.x Lavecchia, G., et al. (2016) Ground deformation and source geometry of the 24 August 2016 Amatrice earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural- geological data , Geophys. Res. Lett., 43, 12,389– 12,398, doi:10.1002/2016GL071723. Lekkas, E.; Agorastos, K.; Mavroulis, S.; Kranis, C.; Skourtsos, E.; Carydis, P.; Gogou, M.; Katsetsiadou, K.-N.; Papadopoulos, G. (2021) The early March 2021 Thessaly earthquake sequence. Newsl. Environ. Disaster Cris. Manag. Strateg. 195. Scholz, C. H. (2002) The Mechanics of Earthquakes and Faulting , 2nd Edn, Cambridge: Cambridge University Press. Tung, S., and Masterlark, T. (2018) Delayed poroelastic triggering of the 2016 October Visso earthquake by the August Amatrice earthquake, Italy. Geophys. Res. Lett. 45, 2221–2229. doi: 10.1002/2017GL076453.

RkJQdWJsaXNoZXIy MjQ4NzI=