GNGTS 2022 - Atti del 40° Convegno Nazionale

GNGTS 2022 Sessione 1.3 143 sediments that is ubiquitous elsewhere in the SFT. If shortening continues, the anticlinal fold will eventually be exposed, as at the Sakhi Sarwar anticline farther north. It is possible that other thrusts may be found to the west, forming an imbricate structure that can host other earthquakes. Conclusions • The 2015 Mw 5.7 Dajal, Pakistan earthquake represents the seismic rupture of a frontal blind ramp of the SFT, presumably as the seismic expression of a fault-propagation fold. • The earthquake illuminates the possible extension of the BT 30 km south of the Zindapir anticlinorium where it breaks the surface, corresponding to the propagation of the SFT some 30 km east into the Miocene and younger sediments of the Indus River floodplain. • Despite this short period of observation, flexural slip is tantamount to 70%of the expected value for coseismic folding, indicating strong mechanical coupling and synchronicity between faulting and folding at the time scales of the seismic cycle. Bibliography Ambraseys, N., and Bilham, R. (2003). Earthquakes and associated deformation in northern Baluchistan 1892- 2001. Bulletin of the Seismological Society of America , 93 (4), 1573-1605. Bagnardi, M., and Hooper, A. (2018). Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach. Geochemistry, Geophysics, Geosystems , 19 (7), 2194-2211. Barbot, S., Agram, P., and De Michele, M. (2013). Change of apparent segmentation of the San Andreas fault around Parkfield from space geodetic observations across multiple periods.  Journal of Geophysical Research: Solid Earth , 118 (12), 6311-6327. Daout, S., Barbot, S., Peltzer, G., Doin, M. P., Liu, Z., and Jolivet, R. (2016). Constraining the kinematics of metropolitan Los Angeles faults with a slip‐partitioning model. Geophysical Research Letters , 43 (21), 11-192. Lai, K. Y., Chen, Y. G., Hung, J. H., Suppe, J., Yue, L. F., and Chen, Y. W. (2006). Surface deformation related to kink-folding above an active fault: Evidence from geomorphic features and co-seismic slips. Quaternary International , 147 (1), 44-54. Mahanjane, E. S., and Franke, D. (2014). The Rovuma Delta deep-water fold-and-thrust belt, offshore Mozambique. Tectonophysics , 614 , 91-99. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space.  Bulletin of the seismological society of America , 75 (4), 1135-1154. Pezzo, G., Merryman Boncori, J. P., Atzori, S., Antonioli, A., and Salvi, S. (2014). Deformation of the western Indian Plate boundary: insights from differential and multi-aperture InSAR data inversion for the 2008 Baluchistan (Western Pakistan) seismic sequence. Geophysical Journal International , 198 (1), 25-39. Poblet, J., and Lisle, R. J. (2011). Kinematic evolution and structural styles of fold-and-thrust belts. Geological Society, London, Special Publications , 349 (1), 1-24. Reynolds, K., Copley, A., and Hussain, E. (2015). Evolution and dynamics of a fold-thrust belt: the Sulaiman Range of Pakistan. Geophysical Journal International , 201 (2), 683-710. Saif-Ur-Rehman, K. J., Ding, L., Jadoon, I. A., Baral, U., Qasim, M., and Idrees, M. (2019). Interpretation of the Eastern Sulaiman fold-and-thrust belt, Pakistan: A passive roof duplex.  Journal of Structural Geology , 126 , 231-244. Sandwell, D., Mellors, R., Tong, X., Wei, M., and Wessel, P. (2011). Gmtsar: An insar processing system based on generic mapping tools. Sathiakumar, S., Barbot, S., and Hubbard, J. (2020). Earthquake cycles in fault‐bend folds.  Journal of Geophysical Research: Solid Earth , 125 (8), e2019JB018557.

RkJQdWJsaXNoZXIy MjQ4NzI=