GNGTS 2022 - Atti del 40° Convegno Nazionale

GNGTS 2022 Sessione 1.1 11 interpretation of two commercial reflection profiles, whose quality and interpretability were previously improved using pre-conditioning filters and seismic attribute analysis ( e.g. , in Ercoli et al. , 2020; Barchi et al. , 2021). Considering the continuity of the CMF, we hypothesize that thewhole systemmay represent the master fault of the area and we speculate that the CMF, or a large portion of it, might be the fault responsible for the 1857 earthquake, during which, different sections could have released the two in-sequence events, in a time-lapse of ~3 minutes (Benedetti et al. , 1998; Burrato and Valensise 2008; DISS W.G., 2021). Assuming that the CMF can rupture entirely during any possible earthquake, even a complex one with several sub-events, and based on the empirical relationships for normal faults, we obtain that the CMF correlates to a maximum expected magnitude between 7 and 7.3, matching the estimated magnitude of the 1857 Basilicata earthquake. In the CMF, we find the simplest possible explanation, supported by literature data (Galli et al. , 2006; Zembo, 2010; Zembo et al. , 2009) and by the new constraints from this work. Our results can be used for guiding future high-resolution geophysical surveys ( e.g. , GPR) and paleoseismological investigations, to give further insights. References Barchi, M. R., Carboni F., Michele M., Ercoli M., Giorgetti C., Porreca M., Azzaro S., Chiaraluce L.; 2021: The influence of subsurface geology on the distribution of earthquakes during the 2016‐–2017 Central Italy seismic sequence . Tectonophysics 807, doi:10.1016/j.tecto.2021.228797. Bello, S. de Nardis R., Scarpa R., Brozzetti F., Cirillo D., Ferrarini F., di Lieto B., Arrowsmith J R., Lavecchia G.; 2021: Fault Pattern and Seismotectonic Style of the Campania – Lucania 1980 Earthquake (Mw 6.9, Southern Italy): New Multidisciplinary Constraints . Frontiers in Earth Science 8, doi:10.3389/feart.2020.608063. Bello, S. Andrenacci C., Cirillo D., Scott C. P., Brozzetti F., Arrowsmith J R., Lavecchia G.; 2022: High-detail fault segmentation: Deep insight into the anatomy of the 1983 Borah Peak earthquake rupture zone (Mw 6.9, Idaho, USA) . Lithosphere (1): 8100224. https://doi.org/10.2113/2022/8100224. Benedetti, L., Tapponnier, P., King, G. C. P. & Piccardi, L. ; 1998: Surface rupture of the 1857 Southern Italian earthquake? Terra Nova 10, 206-210, doi:10.1046/j.1365-3121.1998.00189.x. Biasi, G. P. & Wesnousky, S. G. ; 2016: Steps and gaps in ground ruptures: Empirical bounds on rupture propagation . Bulletin of the Seismological Society of America 106, 1110-1124, doi:10.1785/0120150175. Branno, A., Esposito, E., Marturano, A., Porfido, S. & Rinaldis, V. ; 2021: ; 1983: Studio, su base macrosismica, del terremoto della Basilicata del 16 dicembre 1857 . Boll. Soc. Natur. Napoli 92, 249-338 Brozzetti,F.BoncioP.,CirilloD.,FerrariniF.,deNardisR.,TestaA.,LiberiF.,LavecchiaG.;2019: High-ResolutionFieldMapping and Analysis of the August–October 2016 Coseismic Surface Faulting (Central Italy Earthquakes): Slip Distribution, Parameterization, and Comparison With Global Earthquakes . Tectonics 38, 417-439, doi:10.1029/2018TC005305. Burrato, P. and Valensise, G. ; 2008: Rise and fall of a hypothesized seismic gap: Source complexity in the Mw 7.0 16 December 1857 Southern Italy earthquake . Bulletin of the Seismological Society of America 98, 139-148, doi:10.1785/0120070094. DISS Working Group; 2021: Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas . Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/diss3.3.0 Ercoli M., Forte E., Porreca M., Carbonell R., Pauselli C., Minelli G., Barchi M. R.; 2020: Using seismic attributes in seismotectonic research: an application to the Norcia Mw=6.5 earthquake (30 October 2016) in central Italy . Solid Earth 11, 329-348, doi:10.5194/se-11-329-2020. GalliP.,BosiV.,PiscitelliS.,GiocoliA.&SciontiV.;2006: LateHoloceneearthquakesinsouthernApennine:Paleoseismology of the Caggiano fault . International Journal of Earth Sciences 95, 855-870, doi:10.1007/s00531-005-0066-2. Galli P. and Peronace E. ; 2014: New paleoseismic data from the Irpinia Fault. A different seismogenic perspective for southern Apennines (Italy) . Earth-Science Reviews 136, 175-201, doi:10.1016/j.earscirev.2014.05.013. Mallet R. Great Napolitan earthquake of 1857 . Vol. 1 1-544 (ING-SGA/Chapman and Hall, 1862). Pantosti D. and Valensise G. ; 1990: Faulting mechanism and complexity of the November 23, 1980, Campania- Lucania earthquake, inferred from surface observations . Journal of Geophysical Research 95, doi:10.1029/ jb095ib10p15319. Zembo I.; 2010: Stratigraphic architecture and quaternary evolution of the Val d’Agri intermontane basin (Southern Apennines, Italy) . Sedimentary Geology 223, 206-234, doi:10.1016/j.sedgeo.2009.11.011. Zembo I., Panzeri L., Galli A., Bersezio R., Martini M., Sibilia E.; 2009: Quaternary evolution of the intermontane Val d’Agri Basin, Southern Apennines . Quaternary Research 72, 431-442, doi:10.1016/j.yqres.2009.02.009.

RkJQdWJsaXNoZXIy MjQ4NzI=