GNGTS 2022 - Atti del 40° Convegno Nazionale
376 GNGTS 2022 Sessione 2.2 Due to the lack of shear-wave velocity profiles at most of the considered stations, we are unable to compare the observed site amplification with the site description in terms of the standard soil classes based average shear-wave velocity in theuppermost 30mdepth (Borcherdt, 1994). However, we perform a comparison of the site amplification with two qualitative site classifications, one based on geomorphology (Biolchi et al., 2011) and the other one based on the local geology. Our finding that neither geological nor geomorphologic classifications permit to predict the site amplification category with sufficient confidence, confirms the unreliability of rapid site-response identification approaches based on terrain classification. The estimation of the amplification functions bymeans of the application of GIT on a database of past recordings, as illustrated in the present work (see Klin et al., 2021 for a more complete description), provides an advisable solution for the accurate interpretation of data from any regional network, in monitoring applications as well as in studies related to seismic hazard. References Bindi, D., F. Pacor, L. Luzi, R. Puglia, M. Massa, G. Ameri, and R. Paolucci; 2011: Ground motion prediction equations derived from the Italian strong motion database , Bull. Earthq. Eng. 9 no. 6, 1899–1920, doi: 10.1007/s10518- 011-9313-z. Biolchi, S., L. Zini, P. Leita, and P. Malisan; 2011: Mapping the geomorphological scenarios of the Friuli Venezia Giulia region (NE Italy): a tool for the evaluation of the local seismic amplification. , Il Quatenario 24 , 79–80. Borcherdt, R. D.; 1994: Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification) , Earthq. Spectra 10 no. 4, 617–653, doi: 10.1193/1.1585791. Bragato, P. L. et al.; 2021: The OGS–Northeastern Italy Seismic and Deformation Network: Current Status and Out- look , Seismol. Res. Lett., doi: 10.1785/0220200372. Franceschina, G., S. Gentili, and G. Bressan; 2013: Source parameters scaling of the 2004 Kobarid (Western Slovenia) seismic sequence , Phys. Earth Planet. Inter. 222 , 58–75, doi: 10.1016/j.pepi.2013.07.004. Klin, P., G. Laurenzano, C. Barnaba, E. Priolo, and S. Parolai; 2021: Site Amplification at Permanent Stations in North- eastern Italy , Bull. Seismol. Soc. Am. 111 no. 4, 1885–1904, doi: 10.1785/0120200361. Laurenzano, G., C. Barnaba, M. A. Romano, E. Priolo, M. Bertoni, P. L. Bragato, P. Comelli, I. Dreossi, andM. Garbin; 2019: The Central Italy 2016–2017 seismic sequence: site response analysis based on seismological data in the Arquata del Tronto–Montegallo municipalities , Bull. Earthq. Eng. 17 no. 10, 5449–5469, doi: 10.1007/s10518-018-0355-3. Oth, A., D. Bindi, S. Parolai, and D. Di Giacomo; 2011: Spectral Analysis of K-NET and KiK-net Data in Japan, Part II: On Attenuation Characteristics, Source Spectra, and Site Response of Borehole and Surface Stations , Bull. Seismol. Soc. Am. 101 no. 2, 667–687, doi: 10.1785/0120100135. Poggi, V., C. Scaini, L. Moratto, G. Peressi, P. Comelli, P. L. Bragato, and S. Parolai; 2021: Rapid Damage Scenario As- sessment for Earthquake Emergency Management , Seismol. Res. Lett., doi: 10.1785/0220200245. Fig. 1.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=