GNGTS 2023 - Atti del 41° Convegno Nazionale
Session 3.2 ___ GNGTS 2023 Fig. 2 a) the resistivity model of the ERT crossing the piezometer #1 (the northernmost in Fig. 1, 1 m electrode spacing); b) the GPR result for the piezometer line (400 MHz antenna). The meaning of the black dashed lines is explained in the main text. References Haldorsen, S. and Heim, M. (1999) ‘An arctic groundwater system and its dependence upon climatic change: an example from Svalbard’, Permafrost and Periglacial Processes , 10(2), pp. 137–149. Available at: https://doi.org/10.1002/(SICI)1099-1530(199904/06)10:2<137::AID-PPP316>3.0.CO;2-#. Hauck, C. and Kneisel, C. (2008) Applied geophysics in periglacial environments . Cambridge, UK ; New York: Cambridge University Press. Kasprzak, M. et al. (2017) ‘On the potential for a bottom active layer below coastal permafrost: the impact of seawater on permafrost degradation imaged by electrical resistivity tomography (Hornsund, SW Spitsbergen)’, Geomorphology , 293, pp. 347–359. Available at: https://doi.org/10.1016/j.geomorph.2016.06.013. Leger, E. et al. (2017) ‘Quantification of Arctic Soil and Permafrost Properties Using Ground-Penetrating Radar and Electrical Resistivity Tomography Datasets’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 10(10), pp. 4348–4359. Available at: https://doi.org/10.1109/JSTARS.2017.2694447. Loke, M.H. and Barker, R.D. (1996) ‘Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1’, Geophysical Prospecting , 44(1), pp. 131–152. Available at: https://doi.org/10.1111/j.1365-2478.1996.tb00142.x.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=