GNGTS 2023 - Atti del 41° Convegno Nazionale

Session 1.1 GNGTS 2023 The 2022 Marche offshore sequence took place along the Adriatic outer front of the northern Apennines in central Italy. Offshore seismic reflection profiles image a shallow thrust-and-fold system striking WNW–ESE to NNW–SSE. Along the coastal Adriatic area, active blind thrusts deform Plio-Quaternary siliciclastic turbidites that are few hundreds of meters to more than 2 km thick in correspondence of ramp anticlines and synclines, respectively. In a recent work, through the analysis of high-quality background seismicity data, De Nardis et al. (2022) identified two lithospheric-scale active thrusts deepening westward under the Adriatic outer front from upper- to lower-crustal depths. These new data support previous thick-skinned interpretations of seismic commercial profiles and CROP03 deep reflection data (Lavecchia et al., 2003). Focal mechanisms of weak to moderate (M L < 4.8) local earthquakes occurred between 2009-2017 at upper- to deep-crustal depths show prevailing reverse and reverse/oblique solutions (De Nardis et al., 2022) and subordinate strike-slip faulting (Mazzoli et al., 2014). The analysis of the 2022 Marche offshore sequence opens again the discussion on the uncertainties related to the hypocenter locations of earthquakes that occur in the Adriatic offshore domain (e.g., Di Stefano et al., 2022) and the limits of our present capability to provide an accurate seismotectonic interpretation of the instrumental seismicity in this region. Actually, the 2022 sequence area is only covered on land by RSN, with the closest seismic station located at about 28 km from the epicentral location of the mainshock. The particular geometry of the network along the Italian coast makes it difficult to correctly constrain hypocenter locations compared with other regions of Italy. Taking into account this configuration, although the INGV is able to obtain coherent earthquake information for Civil Protection purposes into the limits of the communication threshold, we note that data provided by the seismic surveillance room in terms of both seismic phase readings of arrival times for hypocenter location and waveform amplitudes for magnitude computation need to a more accurate analysis if the main goal is the correct reconstruction of the active structures involved in the sequence. This analysis should include a) a careful revision of the arrival time pickings to reduce the errors due to seismic phase misinterpretations, b) an accurate study to constrain earthquake locations with appropriate velocity models, and c) the hypocenter solution assessment through adequate tests that define which information can be inferred from earthquake location results. Data analysis and phases interpretation Through the interpretation of the seismic records, the BSI analysts have identified refracted first arrivals of P and S phases at epicentral distances of about 60 km, smaller than those expected for Pn/Sn refracted phases at the Moho discontinuity (e.g., Di Stefano and Ciaccio, 2014) whose arrivals should be observed at distances of about 90-100 km in this area. Since possible systematic misinterpretation of P and S arrivals can strongly affect the correct hypocenter locations, we have carefully revised the phase pickings provided by the INGV surveillance room by discriminating direct from refracted phases at stations located at distances greater than 60 km. This is mainly important for interpretation of weak S refracted phases that are often hidden into the arrivals after the P phase. We have taken into account these characteristics in the earthquake location process by only using clear direct/refracted S phases in our inversion procedure. The comparison of the

RkJQdWJsaXNoZXIy MjQ4NzI=