GNGTS 2023 - Atti del 41° Convegno Nazionale
Session 1.1 GNGTS 2023 Fig. 2 – 3D numerical model with the isopiezometric distribution a) before Vettore fault rupture and b) after fault rupture. Future developments We are going to create a geomechanical failure model to assess the crustal stress-strain field variation related to the seismogenic fault dislocation. The model will be calibrated using a fem numerical inversion of interferometric SAR data available for the 30 October earthquake. The calculated volumetric strain changes will be helpful to calibrate the hydraulic parameters in the hydrological model of groundwater filtration. References Albano M., Barba S., Saroli M., Polcari M., Bignami C., Moro M., Stramondo S., Di Bucci D.; 2019: Aftershock rate and pore fluid diffusion: Insights from the Amatrice‐Visso‐Norcia (Italy) 2016 seismic sequence . Journal of Geophysical Research: Solid Earth, 124, 995–1015, https://doi.org/10.1029/2018JB015677. Bense V.F., Gleeson T., Bour O., Loveless S., Scibek J.; 2013: Fault zone hydrogeology . Earth Science Reviews, 127, 171–92. Biot, M. A.; 1941: General theory of three‐dimensional consolidation . Journal of Applied Physics, 12(2), 155–164. https://doi.org/10.1063/1.1712886. Caine J.S., Evans J.P., Forster C.B.; 1996: Fault zone architecture and permeability structure . Geology 24 (11), 1025–1028. Fyfe W. S.; 2012: Fluids in the Earth's crust: Their significance in metamorphic, tectonic and chemical transport process . Elsevier Science. Retrieved from https://books.google.it/books?id=jBV6km4aNpgC.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjQ4NzI=