GNGTS 2024 - Atti del 42° Convegno Nazionale

Session 1.3 GNGTS 2024 We propose the frst results about our new model of the Cornubian Batholith, evidencing not only the edges of the body, but also the density and susceptbility distributon along the peninsula. The Cornubian ore feld is a perfect area for studying granite-related hydrothermal mineralizaton, and a beter appreciaton of the physical propertes distributon may allow it to be used as a perfect case study in the analysis of areas with similar geologic history, also considering its future importance regarding the mining industry and the green material transiton. References: Beamish, D., Busby, J. (2016) The Cornubian geothermal province: heat producton and fow in SW England: estmates from boreholes and airborne gamma-ray measurements. Geotherm Energy 4, 4. htps://doi.org/10.1186/s40517-016-0046-8 Maurizio, G., Braitenberg, C., Sampietro, D., & Capponi, M. (2023). A new lithospheric density and magnetc susceptbility model of Iran, startng from high-resoluton seismic tomography. Journal of Geophysical Research: Solid Earth, 128, e2023JB027383. htps://doi.org/ 10.1029/2023JB027383 Moorkamp, M., Heincke, B., Jegen, M., Roberts, A. W., Hobbs, R. W. (2011). A framework for 3-D joint inversion of MT, gravity and seismic refracton data, Geophysical Journal Internatonal, Volume 184, Issue 1, Pages 477–493. htps://doi.org/10.1111/j.1365-246X.2010.04856.x Moorkamp, M. (2022). Deciphering the state of the lower crust and upper mantle with mult- physics inversion. Geophysical Research Leters, 49, e2021GL096336. htps://doi.org/ 10.1029/2021GL096336 Reinecker, J., Gutmanis, J., Foxford, A., Coton, L., Dalby, C., Law, R. (2021). Geothermal exploraton and reservoir modelling of the United Downs deep geothermal project, Cornwall (UK), Geothermics, Volume 97, 102226, ISSN 0375-6505. htps://doi.org/10.1016/ j.geothermics.2021.102226 . Romer, R. L., Kroner, U. (2016). Phanerozoic tn and tungsten mineralizaton—Tectonic controls on the distributon of enriched protoliths and heat sources for crustal meltng, Gondwana Research, Volume 31, Pages 60-95, ISSN 1342-937X. htps://doi.org/10.1016/j.gr.2015.11.002 . Sampietro, D., Capponi, M., & Maurizio, G. (2022). 3D Bayesian inversion of potental felds: The Quebec Oka carbonatte complex case study. Geosciences, 12(10), 382. htps://doi.org/ 10.3390/geosciences12100382 Simons, B., Shail, R. K., Andersen, J. C. Ø. (2016). The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatsm in the Rhenohercynian Zone of SW England, Lithos, Volume 260, Pages 76-94, ISSN 0024-4937. htps://doi.org/10.1016/j.lithos.2016.05.010 . Simons, B., Andersen, J. C. Ø., Shail, R. K., Jenner, F. E. (2017). Fractonaton of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatc-hydrothermal mineralisaton, Lithos, Volumes 278– 281, Pages 491-512, ISSN 0024-4937. htps://doi.org/10.1016/j.lithos.2017.02.007 . Willis-Richards, J., Jackson, N. J. (1989). Evoluton of the Cornubian ore feld, Southwest England; Part I, Batholith modeling and ore distributon. Economic Geology; 84 (5): 1078–1100. htps://doi.org/10.2113/gsecongeo.84.5.1078

RkJQdWJsaXNoZXIy MjQ4NzI=