GNGTS 2024 - Atti del 42° Convegno Nazionale

Session 2.1 GNGTS 2024 Simulations. Frontiers in Earth Science 8. Available at: https://www.frontiersin.org/articles/10.3389/feart.2020.591549 [Accessed September 14, 2022]. Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., et al. (2017). Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications. Reviews of Geophysics 55, 1158–1198. doi: 10.1002/2017RG000579. Lynett, P. J., Gately, K., Wilson, R., Montoya, L., Arcas, D., Aytore, B., et al. (2017). Inter-model analysis of tsunami-induced coastal currents. Ocean Modelling 114, 14–32. doi: 10.1016/j.ocemod.2017.04.003. Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 129–137. doi: 10.1109/TIT.1982.1056489. Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., and Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophysical Journal International 200, 574–588. doi: 10.1093/gji/ggu408. Løvholt, F., Bondevik, S., Laberg, J. S., Kim, J., and Boylan, N. (2017). Some giant submarine landslides do not produce large tsunamis. Geophysical Research Letters 44, 8463–8472. doi: 10.1002/2017GL074062. Macías, J., Castro, M. J., and Escalante, C. (2020a). Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data. Coastal Engineering 158, 103667. doi: 10.1016/j.coastaleng.2020.103667. Macías, J., Castro, M. J., Ortega, S., Escalante, C., and González-Vida, J. M. (2017). Performance Benchmarking of Tsunami-HySEA Model for NTHMP’s Inundation Mapping Activities. Pure Appl. Geophys. 174, 3147–3183. doi: 10.1007/s00024-017-1583-1. Macías, J., Castro, M. J., Ortega, S., and González-Vida, J. M. (2020b). Performance assessment of Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Field cases. Ocean Modelling 152, 101645. doi: 10.1016/j.ocemod.2020.101645. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine Learning in Python. MACHINE LEARNING IN PYTHON . Perini, L., Calabrese, L., Luciani, P., Olivieri, M., Galassi, G., and Spada, G. (2017). Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: scenarios and impacts. Natural Hazards and Earth System Sciences 17, 2271–2287. doi: 10.5194/nhess-17-2271-2017. Rafliana, I., Jalayer, F., Cerase, A., Cugliari, L., Baiguera, M., Salmanidou, D., et al. (2022). Tsunami risk communication and management: Contemporary gaps and challenges. International Journal of Disaster Risk Reduction 70, 102771. doi: 10.1016/j.ijdrr.2021.102771. Selva, J., Tonini, R., Molinari, I., Tiberti, M. M., Romano, F., Grezio, A., et al. (2016). Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA). Geophysical Journal International 205, 1780–1803. doi: 10.1093/gji/ggw107.

RkJQdWJsaXNoZXIy MjQ4NzI=