GNGTS 2024 - Atti del 42° Convegno Nazionale

11_Abstract_GNGTS2024.pdf 9
Estimate of seismic fracture surface energy from pseudotachylyte-bearing faults 9
S. Aldrighetti1, G. Di Toro1,2, G. Pennacchioni1 9
1 Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy 9
Offshore fault geometry revealed from earthquake locations using new state-of-art techniques: the case of the 2022 Adriatic Sea earthquake sequence 12
Like An*1, Francesco Grigoli2, Bogdan Enescu1,3, Mauro Buttinelli4, Mario Anselmi4, Irene Molinari4, and Yoshihiro Ito5 12
1Department of Geophysics, Graduate School of Science, Kyoto University, Kyoto, Japan 12
2Department of Earth Sciences, University of Pisa, Pisa, Italy 12
3National Institute for Earth Physics, Magurele, Bucharest, Romania 12
4National Institute of Geophysics and Volcanology, Italy 12
5Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan 12
1 Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy 13
2 Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy 13
3 Università degli Studi di Roma Tre, Roma, Italy 13
A. Arrighetti1, B. Gelli2, V. Castelli3 16
1 École normale supérieure - Université PSL (AOROC UMR 8546), Paris, France; 16
2 Università degli Studi di Siena, Italia; 3 INGV, Bologna/Ancona, Italia 16
Fig. 1 – The 1467 Siena seismic sequence according to CPTI15 v. 4.0 (Rovida et al., 2022). 17
Three-dimensional magnetotelluric inversion applied in a sector of the Irpinia Fault System (Southern Apennine) 25
1 Istituto di Metodologie per l’Analisi Ambientale, CNR – Tito Scalo, PZ 25
2 Istituto di Geofisica e Vulcanologia INGV, Roma 25
3 Università degli Studi di Bari 25
The harsh life of an earthquake in the region that doesn't exist 27
S. Baranello1,2, R. Camassi1, V. Castelli1 27
1 Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy 27
The historical research on earthquakes often clashes with harsh reality: if the earthquake is not destructive, if it occurs during a particularly complex historical period, dominated by wars, epidemics, and other misfortunes, there is the possibility of its memory being lost. Sometimes, in addition to the scant production of testimonies about the earthquake and its impact, possible problems arise in the preservation of such testimonies. And finally, the obstacle course of the historical seismologist can find many doors closed today. Literally. 27
And this happens especially in the region that doesn't exist... 27
When any of these circumstances (or all of them) occur, research must necessarily pursue not only written testimonies but also simple clues, indirect evidence of the earthquake's occurrence, such as local traditions, the presence of a local earthquake-related cult, etc. 27
Baratta (1901) devotes only a few very generic lines to the Molise earthquake of May 1712. First of all, he says that an earthquake was felt in early May in Naples, and that it caused panic among the Neapolitans. To this news, Baratta adds that an earthquake was also felt in Campobasso where "some houses and churches were ruined." Finally, he mentions several shocks that were felt in Benevento between May and June 15. 27
Baratta's sources are respectively a summary of the Bologna Gazette published by De Rossi (1889) and a brief mention of Campobasso by Sarnelli (1716). 27
In the Postpischl (1985) catalogue, these pieces of information are summarized into an event dated generically to May 1712, located in Bojano, with an epicentral intensity of VIII MCS (Tab. 1). 27
The AMGNDT995 data sheet dedicated to the 1712 earthquake considers various information not clearly attributable to a single event and downgrades the earthquake, dated May 8th, locating it in Campobasso with an epicentral intensity uncertain between VI and VII MCS. The study suggests that the assertion that houses and churches were 'ruined' refers to a level of moderate, non-structural damage. This interpretation has been incorporated into the CPTI catalogue in its various versions. 28
Recently, in the frame of a research project aimed at improving the preliminary AMGNDT995 studies, the case of the 1712 earthquake has been reopened, following the report of the presence of the cult of San Michele in Ripalimosani, connected to the averted danger during an earthquake dated May 1712 [Mascia, 2000]. 28
Overall, this is certainly a very interesting and complex situation regarding a certainly important earthquake that affected a very large area of central Italy (Fig. 1). 28
Fig. 1 – Distribution map of the distribution of the effects of the earthquake of 8 May 1712 29
Andrea Brogi1,2, Paola Vannoli3, Martina Zucchi1, Pierfrancesco Burrato3, Umberto Fracassi3, Gianluca Valensise3, Hsun-Ming Hu4,5, Chuan-Chou Shen4,5 31
1 Department of Earth and Geoenvironmental Sciences (University of Bari, Italy) 31
2 CNR-IGG, Institute for Geosciences and Georesources (C.N.R., Italy) 31
3 Istituto Nazionale di Geofisica e Vulcanologia (Italy) 31
4 High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, (National Taiwan University, Taiwan, ROC) 31
Fluid-rock interaction in eclogite-facies meta-peridotites (Erro-Tobbio Unit, Ligurian Alps) 35
S. Cacciari1, G. Pennacchioni1, M. Scambelluri2, E. Cannaò3, G. Toffol1 35
1 Università degli Studi di Padova, Italy 35
2 Università degli Studi di Genova, Italy 35
3 Università degli Studi di Milano - La Statale, Italy 35
Scambelluri M., Tonarini S.; 2012: Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40, 10, 907–910. doi: 10.1130/G33233.1 38
Stress drop scaling is still a very controversial topic: is it real or apparent? 39
G. Calderoni1 39
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) 39
The stress drop scaling is still an unresolved issue and continues to be controversial in the scientific community. However, knowledge of seismic source scaling parameters plays a fundamental role in assessing the seismic forecasting in a given area and in improving ground motion predictions for seismic hazard mitigation. For this reason, this study compares the Brune stress drop of the earthquake sequence that struck the 2010-2014 Pollino area in the southern Apennines with those estimated for other earthquakes that occurred in different areas of the Apennines during the following seismic sequences: 2009 L’Aquila (Calderoni et al., 2013), 2016-2017 Amatrice (Calderoni & Abercrombie 2023), 2013-2014 Sannio-Matese (Calderoni et al., 2023) and 2019 Northern Edge of the Calabrian Arc Subduction Zone (Calderoni et al., 2020). Three different methods are used, and the results are compared with previous studies.In the first procedure (Calderoni et al. 2019) a two-step approach is used to model the attenuation and then estimate the source parameters from individual earthquake spectra. In the second procedure, an EGF approach is applied. In the third procedure, a modified EGF approach is applied using a scaling law derived by Calderoni et al., (2013) for the L’Aquila 2009 seismic sequence. To gain deeper insights into the interpretation of the result, the structural complexities and tectonic barriers that control seismic activity in the Pollino area are considered (Cirillo et al., 2022). 39
A “new” Aeolian event in the 20th century: the 19th June 1916 earthquake in Filicudi Island. 41
C.H. Caracciolo 41
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Italy 41
Conclusions 44
What about the predecessors of the February 2023 earthquakes in Eastern Anatolia? 56
V. Castelli1, K. Sesetyan1,2, A.A. Gomez Capera3, C. Meletti4, M. Stucchi1 56
1Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna, Bologna/Ancona, Italy; 56
2Bogazici University, Kandilli Observatory and Earthquake Research Institute, Dept. of Earthquake Engineering, Istanbul, Turkey; 56
3Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Milano, Milano, Italy; 56
4Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Pisa, Pisa, Italy. 56
«Se dice etiam per teremoti esser sommerso et ruinato tre terre» (How a large historical earthquake was born). 60
V. Castelli 1 60
1 Istituto Nazionale di Geofisica e Vulcanologia-Sezione di Bologna, Bologna/Ancona, Italy 60
Fig. 1 – Excerpt of the report written Maestro Andrea on 10 March 1514, as transcribed in Venice by Marin Sanudo sometime in the second half of 1514 (Biblioteca Nazionale Marciana, Venice). 60
Active Transpressive Faulting Along the High Atlas Mountains: the 8 September 2023, MW 6.8, Morocco Earthquake 63
D. Cheloni1, N. A. Famiglietti2, R. Caputo3, C. Tolomei1, A. Vicari2 63
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 63
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Irpina, Italy 63
3 Department of Physics & Earth Sciences, Ferrara University, Italy 63
Geodetic Modelling of the 2023 MW 7.8 and 7.6 Türkiye Earthquake Sequence 66
D. Cheloni1, N. A. Famiglietti2, A. Akinci1, R. Caputo3, A. Vicari2 66
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 66
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Irpina, Italy 66
3 Department of Physics & Earth Sciences, Ferrara University, Italy 66
Seismic cycle in bituminous dolostones (Central Apennines, Italy) 70
M. Chinello1, E. Bersan, M. Fondriest1, T. Tesei1, G. Di Toro1,2 70
Estimating the source parameters of a moderate earthquake using the second seismic moments 74
Cuius1,2, A. Saraò3, H. Meng4, G. Costa1 74
1 Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy 74
2 National Institute of Geophysics and Volcanology, INGV, Roma, Italy 74
3 National Institute of Geophysics and Applied Geophysics, OGS, Trieste, Italy 74
4 Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China 74
Introduction 74
The study of earthquake generation and associated seismic parameters such as seismic moment, rupture size, rupture velocity and direction, and stress drop is crucial for understanding earthquake dynamics and the underlying physics of the seismic process. This information plays an important role in the estimation of ground shaking near the earthquake source and in the assessment of seismic hazard, even for low to moderate magnitude earthquakes. 74
The kinematic properties of small earthquakes are often difficult to determine, and simple models are often used to represent these events, although improved records show that source complexity is common even for small earthquake ruptures (e.g. Calderoni and Abercrombie, 2023 and reference therein). 74
A critical task in determining finite source attributes for moderate and low magnitude earthquakes requires good removal of path and site effects. To address this problem, several methods based on empirical Green's function (EGF) deconvolution have been developed in recent decades. Although the EGF offers several advantages, its application is associated with some difficulties, as there are often no focal mechanisms for small earthquakes and source effects have been observed even for low energy events (Calderoni et al. 2023). 74
The simplest general representation of an earthquake that contains information about the rupture extent and directivity is the point-source representation plus the variances or second-degree moments of the moment-release distribution. The hypocenter and the origin time of the earthquake correspond to the spatial and temporal average (first degree moment) of the release moment distribution. The information about the rupture extent, the characteristic duration and the direction of rupture propagation correspond to the variance of the moment distribution in the spatial, temporal and spatio-temporal domain (second-degree moments). Seismic moments are calculated from apparent durations measured from apparent source time functions (ASTF) for each station after removal of path effects. The ASTF is thus the projection of the rupture process onto the seismic ray path, and its properties also depend on the azimuth and take-off angles (e.g. McGuire, 2004). For a unilateral rupture, the ASTF observed from stations in the direction of propagation would be significantly shorter than the ASTF from stations in the opposite direction. 74
A major advantage of the second moments method is that it can theoretically be applied to all earthquakes, regardless of their magnitude and complexity, and without requiring the assumptions of an a priori source model (e.g. McGuire 2004; Meng et al., 2020; Cuius et al., 2023). It is also a consistent tool for evaluating scaling relationships between finite source attributes and earthquake magnitudes for large and small earthquakes and for resolving fault plane ambiguity. 75
However, the elimination of the path effect is crucial, and a biased ASTF calculation would lead to inaccurate calculations of the second seismic moments. However, there may also be other factors that influence the results of the second moments, even if the propagation effects have been correctly removed. 75
The aim of this study is to implement and test an efficient method for estimating source parameters and rupture directivity in near real-time for medium and small earthquakes. To achieve our goal, we implemented an approach developed by McGuire et al. (2004), which consists of calculating the second-degree seismic moments (Meng et al., 2020; Cuius et al., 2023). In this paper, we first perform a study with some synthetic tests to evaluate the influence of uncertainties related to our prior knowledge and observations on the resulting source parameters (Cuius et al. 2023). We then apply the method to a real earthquake in Italy and present the result. 75
Analysis of the sensitivity of the second moments tensor resolutions 75
To evaluate the sensitivity of the second moment solutions, we used synthetic ASTFs computed for a rectangular plane fault discretized by a grid of cells, each assigned a specific slip value. Full details can be found in Cuius et al. 2023. The input parameters used to model the ASTF for a magnitude Mw 4.6 earthquake source are listed in Tab. 1. We assumed that the epicenter was located in central Italy and approximated the fault as a 3.0 km box model (Fig. 1). The rupture area was divided into 12x12 cells, and the slip distribution and rupture time for the unilateral (Fig. 1a; 1b) and bilateral (Fig. 1d; 1e) scenarios were taken from a previous study of a similar magnitude earthquake (SRCMOD database - Mai and Thinbgaijam, 2014), with a focal mechanism of 247° strike, 46° dip and 40° dip. Using the actual station configuration, we calculated the ASTFs with a sampling frequency of 100 Hz and a source time function of 3 seconds. A uniform propagation of the rupture front with a rupture velocity of 2.75 km/s was assumed, which corresponds to 0.9 times the S-wave velocity in the source region. A simplified 1-D velocity model for central Italy was used to model the ASTF (Cuius et al., 2023). 75
Tab. 1. Input parameters used to model the unilateral and bilateral scenarios for the characteristic rupture size ( and ), characteristic rupture duration ( ), centroid rupture velocity ( ) and directivity (dir). 75
Fig 1. Input source for unilateral (A,B) and bilateral (D,E) scenarios. The star represents the hypocenter, the dot represents the centroid location, and the arrow indicates the rupture direction. Panels (C,F) show the ASTFs calculated from the respective models for three different azimuth directions. 76
To investigate how the uncertainties introduced by the input data may affect the solutions of the resolved second seismic moments, we used the bootstrap approach. In this technique, perturbations are introduced for each input parameter to be analyzed by generating 1000 variations around the mean value. An inversion is then performed to assess the impact on the mean and standard deviation of the resulting data. The workflow is summarized in Fig. 2. 76
We investigated the uncertainties associated with the ASTF, the location of the hypocenter, the station distributions around the source, the focal mechanism, and the velocity model used for ray tracing. Some of these tests are interrelated. For example, the uncertainties in the position of the hypocenter and the velocity model affect the calculated ray path, and both the different focal mechanism and station coverage affect the resolution of the fault plane. The uncertainties in the epicenter estimates were not investigated because they have negligible effects on the slowness vectors in the inversion of the second moments. 76
Results of the synthetic tests 76
The sensitivity analysis performed in this study shows that the uncertainties in the input data have different effects on the calculation of the source parameters and that an accurate measurement of the ASTF as well as the velocity model play the most important role in influencing the inversion process. The results of our tests (Tab. 2 and Fig. 3) show that the main source parameters, i.e. fracture size, swelling duration and centroid velocity, are generally well reproduced within the standard deviation. The source duration resulting from the inversion process is strongly influenced by the duration of the input ASTF, and even 10 % influences the inversion of the second moment tensor. In the case of dense instrumentation, the horizontal location of the earthquake can be well resolved, but the resolution of the earthquake depth is largely determined by the velocity model, and an inaccurate earthquake location can lead to uncertainties in the resolved second moments. Care must also be taken to avoid artifacts due to the discretization of the velocity model when the hypocenter is located at an interface between two layers with high velocity contrast. 77
Fig. 2 Flowchart of the perturbation test. For each test, we computed 1000 random station configurations or perturbed input variables (depth, velocity model, focal mechanism, or observed c) with a given standard deviation. Then we performed the inversion and calculated the source parameters and directivity. Finally, we calculated the mean and dispersion of the output variables of the 1000 scenarios. 77
The values of the directivity depend on the ASTF duration, the choice of velocity model and the focal mechanism (Fig. 3). To ensure good resolution of the fault plane, good coverage of the ray path is critical for both upward and downward waves (McGuire, 2004). The component of rupture directivity along the dip can only be well determined if stations directly above the hypocenter are available, as the seismic rays are nearly horizontal at most other stations. 77
Fig. 3 Violin plots showing the Mean values and dispersions of each output variable resulting from each perturbation test given on the x-axis, i.e., focal mechanism (fm), observed τc (oτc ), velocity models (mA and mB, respectively), hypocentral depth (h), and station configuration (sc) for the unilateral scenario. (A–E) represent the solutions for the characteristic length, characteristic width, source duration, directivity and centroid rupture velocity respectively. The y-axis indicates the value of the output variable. The shape of each violin graph reflects the numerical counts of the resulting value. The red line serves as reference, indicating the input value. 78
Application to real case: the Mw 4.6 Central Italy earthquake 80
The method was then applied to study the Mw 4.6 event of March 2023 in central Italy, using data from the Italian seismic network (RSN (Amato et al., 2008) and the Italian accelerometry network (RAN (Costa et al., 2022)). We compute the ASTFs through the EGF deconvolution using the P and S waves. 80
We calculated the second seismic moment to obtain information about the directivity and source parameters. The main parameters calculated with this method are the following = 1.16 km, = 0.615, = 0.14 s, = 1.86 m/s, dir = 64, stress drop = 7.37 MPa). The relatively small value of is possibly due to the poor resolution of the vertical component and can be explained by the interaction of two factors: the vertical rupture plane and the small number of stations in the immediate vicinity of the epicenter (< 5 km). 80
Conclusions 80
The use of second-moment tensors to determine the source parameters, including directivity, of moderate-magnitude earthquakes could be a valuable tool to improve our understanding of the source dynamics in a given area and to the risk mitigation. One possible application of the second-moments method to small earthquakes would be to identify portions of large faults that produce super-shear ruptures and correlate them with the geology of the fault zone. The second moments method also provides lower constraints on rupture velocity, which can be particularly useful for unilateral ruptures. However, before the results can be interpreted, the resolution limits of the method need to be known due to the possible uncertainties of the parameters used as inputs to the computational procedure. 80
To overcome the difficulties related to the analysis of noisy signals in the time domain, which can be an important limitation in the calculation of ASTFs and consequently the source duration for low magnitude events, an experimental approach based on the frequency domain is currently being developed. Although the frequency domain deconvolution-based method is currently more time consuming than time domain deconvolution, it can be used in situations where the determination of reliable ASTFs is difficult due to noise, which is often the case for low magnitude earthquakes. 80
Acknowledgements 80
We are deeply grateful to the Italian Department of Civil Protection – Presidency of the Council of Ministers for funding this research. 80
References 81
Amato, A., & Mele, F. (2008). Performance of the INGV National Seismic Network from 1997 to 2007. Annals of Geophysics. 81
Calderoni, G., and Abercrombie, R. E. (2023). Investigating spectral estimates of stress drop for small to moderate earthquakes with heterogeneous slip distribution: Examples from the 2016-2017 Amatrice earthquake sequence. J. Geophys. Res.: Solid Earth., 128, e2022JB025022, doi: 10.1029/2022JB025022 81
Costa, G., Brondi, P., Cataldi, L., Cirilli, S., Ertuncay, D., Falconer, P., ... & Turpaud, P. (2022). Near-Real-Time Strong Motion Acquisition at National Scale and Automatic Analysis. Sensors, 22(15), 5699. 81
Cuius, A., Meng, H., Saraò, A., & Costa, G. (2023). Sensitivity of the second seismic moments resolution to determine the fault parameters of moderate earthquakes. Frontiers in Earth Science, 11. 81
Mai, P. M., and Thingbaijam, K. K. S. (2014). SRCMOD: an online database of finite-fault rupture models. Seismol. Res. Lett. 85, 1348–1357. doi:10.1785/0220140077 81
McGuire, J. J. (2004). Estimating finite source properties of small earthquake ruptures. Bulletin of the Seismological Society of America, 94(2), 377-393. 81
Meng, H., McGuire, J. J., & Ben‐Zion, Y. (2020). Semiautomated estimates of directivity and related source properties of small to moderate Southern California earthquakes using second seismic moments. Journal of Geophysical Research: Solid Earth, 125(4), e2019JB018566. 81
Corresponding author: arianna.cuius@ingv.it 81
A natural pump-probe experiment reveals nonlinear elastic properties along the Irpinia Fault, Southern Apennines 82
Source parameter estimation by using Q tomography: the potentiality of exploiting large sequence of aftershocks 84
P. De Gori1, F. P. Lucente1, C. Chiarabba1 84
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy 84
Calibration of the local magnitude scale (ML) for eastern Cuba 86
E. Diez1, D. Sandron2, M. Cutie1, M. Guidarelli2 86
1 Centro Nacional de Investigaciones Sismológicas (CENAIS), Santiago de Cuba, Cuba. 86
2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale — OGS, Sgonico, Italy. 86
IASPEI (International Association of Seismology and Physics of the Earth’s Interior (2013). Summary of magnitude working group recommendations on standard procedures for determining earth- quake magnitudes from digital data, available at http://download .iaspei.org/commissions/CSOI/Summary_WG_recommendations_ 20130327.pdf (last accessed April 2023). 89
Moreno, B., and O. González (2001). Local magnitude scale for the eastern region of Cuba, in Sismicidad de Cuba y estructura de la corteza, J. L. Alvarez Gómez (Editor), Editorial Academia, La Habana, Cuba, ISBN: 978-959-02-0242-1 (in Spanish). 89
Moreno, B., M. Grandison, and K. Atakan (2002). Crustal velocity model along the southern Cuba margin. Implications for the tectonic regime at an active plate boundary. Geophys. J. Int. 151, 632–645. 89
Richter, C. F. (1935). An instrumental earthquake magnitude scale, Bull. Seismol. Soc. Am. 25, no. 1, 1–32. 89
Sandron, D., G. F. Gentile, S. Gentili, A. Sarao, A. Rebez, M. Santulin, and D. Slejko (2015). The Wood-Anderson of Trieste (northeast Italy): One of the last operating torsion seismometers, Seismol. Res. Lett. 86, no. 6, 1645–1654, doi: 10.1785/0220150047. 89
Uhrhammer, R. A., and E. R. Collins (1990). Synthesis of Wood– Anderson seismograms from broadband digital records, Bull. Seismol. Soc. Am. 80, 702–716. 89
D. Famiani1, F. Cara1, G. Di Giulio2, M. Vassallo2, G. Milana1 94
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy. 94
2 Istituto Nazionale di Geofisica e Vulcanologia, L’Aquila, Italy. 94
Early results of a systematic revision of Ferrarese seismicity of the 13th-15th centuries. 97
A. Faoro1, R. Camassi1, V. Castelli2 97
1 Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna, Bologna, Italy, 97
2Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna, Bologna/Ancona, Italy 97
Fig. 1 – Seismic history of Ferrara (1000-2020) from Locati et al. (2022). The dated earthquakes are local ones (i.e. with epicentral location “in” Ferrara or in the “Ferrarese”). 98
H. Fernandez1,2, G. D. Chiappetta1, A. Schibuola1,3, M. La Rocca4, S. Gentili1, L. Peruzza1 100
1 OGS, Trieste, Italy 100
2 Università degli Studi "G. d'Annunzio" Chieti - Pescara, Italy 100
3 Université Gustave Eiffel, Marne-la-vallée, France 100
Fig. 1 - Seismic activity on the Esaro valley, Northern Calabria, Italy (1985-2023) 101
Linking Seismicity, Geochemical And Environmental Data: The New Frontier Of Multiparametric Networks 105
E. Ferrari1, M. Massa1, A.L. Rizzo2,1, S. Lovati1, F. Di Michele1 105
1 National Institute of Geophysics and Volcanology (INGV), Milano, Italy 105
2 Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy 105
A. Ferreri1, A. Romeo2, R. Giannuzzi1, G. Cecere2, S. de Lorenzo1, L. Falco2, M. Filippucci1,2, M. Michele2, G. Selvaggi2, A. Tallarico1,2 107
1 Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Bari, Italy 107
de Lorenzo S., Michele M., Emolo A., and Tallarico A.; 2017: A 1D P-wave velocity model of the Gargano promontory (southeastern Italy). J. Seismol., 21 (4), 909–919, doi:10.1007/s10950-017-9643-7 108
Filippucci M., Miccolis S., Castagnozzi A., Cecere G., de LorenzoS., Donvito G., Falco L., Michele M., Nicotri S., Romeo A., Selvaggi G. and Tallarico A.; 2021b: Gargano Promontory (Italy) microseismicity (2013-2018): waveform data and earthquake catalogue. Mendeley Data, V3, doi: 10.17632/7b5mmdjpt3.3 108
Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences and gempa GmbH (2008). The SeisComP seismological software package. GFZ Data Services. doi: 10.5880/GFZ.2.4.2020.003. 108
Lomax A., Virieux J., Volant P. and Berge-Thierry C.; 2000: Probabilistic Earthquake Location in 3D and Layered Models. In: Thurber C.H., Rabinowitz N. (eds) Advances in Seismic Event Location. Modern Approaches in Geophysics, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9536-0_5. 108
Scafidi D., Spallarossa D., Ferretti G., Barani S., Castello B., and Margheriti L.; 2019: A complete automatic procedure to compile reliable seismic catalogs and travel‐time and strong‐motion parameters datasets. Seismological Research Letters, 90(3), 1308-1317, doi: 10.1785/0220180257 108
University of Bari Aldo Moro. (2013). OTRIONS [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OT 108
Monitoring tectonic environments with DAS: the case study of the Irpinia Near Fault Observatory 109
R. Fonzetti 1, 2, L. Valoroso 1, A. Govoni 1, P. De Gori 1, C. Chiarabba 1 112
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome (RM) 112
2 Università degli Studi Roma Tre , Rome (RM) 112
Fig.1 – a) The entire 2009 QF seismicity with at least 6 P- and 4 S arrival times (blue dots) relocated by using Hypoellipse with an optimised 1D-velocity model. The best locations (selecting criteria are specified in the upper left corner of the map) are shown. Red triangles are the seismic stations used by QF for the locations. Dark grey lines represent the main faults of the area. Pink lines are the evidence of surface rupture during the L’Aquila 2009 seismic sequence. Black straight lines are traces of vertical cross sections; b) some of the most interesting vertical sections (strike N°50E) showing the depth distribution of the seismic events occurred within ± 0.8 km distance from the sections; c) above, the magnitude vs time diagram and histogram of magnitude values; bottom) histograms showing the number of P- and S- waves, RMS (s), ERH (km), ERZ (km) and GAP (°). 113
Introduction 124
Previous seismic source models for the 1783 seismic sequence 125
Structural data 126
Seismological data: 3D fault modelling from earthquakes distribution 126
Slip Tendency 129
Conclusion 129
References 131
F. Grigoli1, C. Rossi2, C. Cocorullo2 132
1 University of Pisa, Italy 132
2 Seismix s.r.l., Italy 132
Supervised and unsupervised machine learning approaches for identifying the preparatory process of moderate earthquakes at The Geysers, California 142
A.G. Iaccarino1, M. Picozzi1,2 142
1Università degli Studi di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy 142
2National Institute of Oceanography and Applied Geophysics, OGS, Sgonico, Italy 142
Fig. 1 – Maps of the M3.5 events compared to the areal well density (contour plot). The events with a preparatory phase are shown as red squares; yellow squares refer to the events with an unclear preparatory phase; the other M3.5 events as grey squares. 143
G. Lavecchia1,2, C. Andrenacci1,2, S. Bello1,2, F. Pietrolungo1,2, D. Cirillo1,2, A. Carducci1,2, F. Ferrarini1,2, F. Brozzetti1,2, R. de Nardis1,2 152
1 DiSPuTer, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy 152
2 CRUST - Centro inteRUniversitario per l’analisi Sismotettonica Tridimensionale, Chieti, Italy 152
Analysis and preliminary results of the Mw 4.9, Marradi seismic sequence (September 18th, 2023), in the northern Apennines, carried out by the BSI working group. 154
A. Lisi, L. Arcoraci, P. Battelli, M. Berardi, B. Castello, D. Latorre, A. Marchetti, M. Michele, V. Misiti, A. Nardi, D. Piccinini, A. Rossi, Gruppo di lavoro del Bollettino Sismico Italiano* 154
Fig.1 – Comparison between hypocentral parameters (a,b,c) and used time readings (d) for the same 352 earthquakes detected, during the first 3 days of the sequence, from seismic monitoring room and revised from BSI. 155
Fig.2 – Map view: Earthquakes recorded in the first 3 days of the sequence and revised by the BSI working group. Events are initially relocated using the NonLinLoc code (Lomax et al., 2000) and the local 1D velocity model from Pastori et al. (2019). Subsequently, a double-difference code (Waldhauser and Schaff, 2008) is applied to improve the geometries of the activated structures. The two vertical cross-sections are oriented perpendicular to the strike of the computed TDMT solution of the Mw=4.9 event (Scognamiglio et al., 2006). 156
Fig.3 – Cumulative number of events over the time and relative magnitude distribution until October 10th. (a)The colours represent the average cross-correlation (CC) of each detected event. (b) New detected events are shown in red colour while the templates are in grey. (c ) The Gutenberg - Richter relationship. (d) The magnitude of matched events (in red with their respective error bars) and that of the templates (in black). 157
Studying the Viability of Kinematic Rupture Models and Source Time Functions with Dynamic Constraints 158
M.E. Locchi1, F. Mosconi1, M. Supino2, E. Casarotti2, E. Tinti1,2 158
1 Sapienza Università di Roma, Rome, Italy; 158
2 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy; 158
Fig. 1: Workflow for one model: results from spontaneous rupture of a bidirectivity model on the left; kinematic inversions results using ground-motion from dynamic model. For each source time function different rise time and rupture velocity were tested. The slip distribution from best models of each source time function. 159
Seismic attenuation and stress on the San Andreas Fault at Parkfield: are we critical yet? 168
L. Malagnini*1,2, R. M. Nadeau2, and T. Parsons3 168
Guilhen, A. and Nadeau, R.M. (2012), Episodic tremors and deep slow-slip events in Central California, EPSL, 357-358, 1-10. 176
Malagnini, L., Dreger, D. S., Bürgmann,R., Munafò, I., & Sebastiani, G. (2019). Modulation of seismic attenuation at Parkfield, before and after the 2004 M6 earthquake. Journal of Geophysical Research: Solid Earth,124, 5836–5853. https://doi.org/10.1029/2019JB017372. 176
Malagnini, L., & D.S. Dreger (2016). Generalized Free-Surface Effect and Random Vibration Theory: a new tool for computing moment magnitudes of small earthquakes using borehole data, Geophys J Int (2016) 206 (1): 103-113. https://doi.org/10.1093/gji/ggw113. 176
Nadeau, R.M., Guilhem, A. (2009). Nonvolcanic Tremor Evolution and the San Simeon and Parkfield, California, Earthquakes,Science 325, 191, DOI: 10.1126/science.1174155. 176
Sebastiani, G., & L. Malagnini (2020). Forecasting the Next Parkfield Mainshock on the San Andreas Fault (California), Journal of Ecology and Natural Resources, vol. 4, issue 3, https://doi.org/10.23880/jenr-16000218. 176
Density values in the shallow crust: analysis and comparison of deep well data in the Adriatic region (Italy) 177
M.T. Mariucci1, P. Montone1, P. Balossino2 177
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 177
2 Former ENI S.p.A. Natural Resources, Italy 177
Gardner G.H.F., Gardner L.W., Gregory A.R.; 1974: Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780. 177
3D Hypocenters relocation in high-resolution central Mediterranean velocity model 179
I. Menichelli1*, P. De Gori1, C. Chiarabba1 179
1 Istituto Nazionale di Geofisica e Vulcanologia (Rome, Italy) 179
In this study, a new 3D relocated hypocenters catalogue has been built for the Italian region using an updated 3D velocity model computed for the central Mediterranean area (Menichelli et al., 2023). Classical one-dimensional velocity models, due to their limitation in recovering lateral heterogeneous variations in the velocity structure, offer only a simplified depiction of the reality. For this reason, the necessity to use 3-D velocity models in the location of hypocenters, which consider the inhomogeneous structure of the different layers that constitute the earth's interior, has been emerging in recent years. 179
The 3D tomographic model used has been computed inverting P- and S- arrival times recorded between 2014-2021 by the RSN (Italian Seismic Network) and AlpArray (AlpArray 2015; Hetenyi et al., 2018) seismic network. In particular, the seismic data set includes Pg, Pn, Sg, and Sn, and the related arrival times were manually picked within a maximum epicentral distance of 1000 km. 179
Thurber, C., & Eberhart-Phillips, D. (1999). Local earthquake tomography with flexible gridding. Computers & Geosciences, 25(7), 809-818. 181
Exploring Italy's Present-Day Stress Field Complexity through Utilisation of Geophysical, Geological, and In Situ Drilling Data 182
P. Montone and M. T. Mariucci 182
Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy 182
Fig. 1 – New data from 21 earthquake focal mechanisms and 9 breakout directions. Further 10 wells with no ovalization are highlighted with open circles. 183
ISIDe Working Group; 2007: Italian seismological instrumental and parametric database (ISIDe). Rome, Italy: Istituto Nazionale di Geofisica e Vulcanologia. doi:10.13127/ISIDE. 184
Mariucci M.T., Montone P.; 2022: IPSI 1.5, database of Italian present-day stress indicators. Rome, Italy: Istituto Nazionale di Geofisica e Vulcanologia. doi:10.13127/IPSI.1.5. 184
Montone P., Mariucci M.T.; 2023: Deep well new data in the area of the 2022 Mw 5.5 earthquake, Adriatic Sea, Italy: In situ stress state and P-velocities. Front. Earth Sci. 11:1164929. doi: 10.3389/feart.2023.1164929. 184
Montone P., Mariucci, M.T.; 2016: The new release of the Italian contemporary stress map. Geophys. J. Int. 205, 1525–1531. doi:10.1093/gji/ggw100. 184
Scognamiglio L., Tinti E., Quintiliani M.; 2006: Time domain moment tensor (TDMT). Rome, Italy: Istituto Nazionale di Geofisica e Vulcanologia. doi:10.13127/TDMT. 184
Modeling dynamic ruptures on extended faults for microearthquakes induced by fluid injection 185
F. Mosconi1, E. Tinti1,2, E. Casarotti2, A. A. Gabriel3, R. Dorozhinskii4, L. Dal Zilio5, A. P. Rinaldi5, and M. Cocco2 185
1 Università la Sapienza, Rome, Italy 185
Fig. 1 Snapshot of the slip rate evolution during the rupture propagation of a microearthquakes (Mw = 0.71) in the context of fluid induced seismicity; for the model with Dc = 0.6mm. 186
L. Passarelli 1, S. Cesca2, L. Mizrahi3, G. Petersen2 187
M. Picozzi1,2, A.G. Iaccarino2, D. Spallarossa3 188
ML-based workflow for earthquake detection and location: preliminary results from the northern Apennines with a model trained on local waveforms 189
G. Poggiali1, S. Bagh2, L. Chiaraluce2, C. J. Marone1, Z. E. Ross3, E. Tinti1, W. Zhu4 189
1 La Sapienza Università di Roma, Rome, Italy 189
2 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 189
3 Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA 189
4 University of California, Department of Earth & Planetary Science, Berkeley, CA, USA 189
Fig. 1 – Map, cross sections (1-3, width=5km) and longitudinal section (4, width=20km). Cross sections 1 and 2 clearly depict the Altotibernia Fault at depth and the shallower seismicity pertaining to the Pietralunga (1) and Gubbio (2) sequences. The lithological model on the background is from Latorre et al., 2016. 190
Cattaneo, M., Frapiccini, M., Ladina, C., Marzorati, S., & Monachesi, G. (2017). A mixed automatic-manual seismic catalog for Central-Eastern Italy: analysis of homogeneity. Annals of Geophysics. 191
Smith, Jonthan D, Zachary E Ross, Kamyar Azizzadenesheli, and Jack B Muir. 2022. “HypoSVI: Hypocentre Inversion with Stein Variational Inference and Physics Informed Neural Networks.” Geophysical Journal International 228 (1): 698–710. 191
Zhu, Weiqiang, and Gregory C. Beroza. 2019. “PhaseNet: A Deep-Neural-Network-Based Seismic Arrival-Time Picking Method.” Geophysical Journal International 216 (1): 261–73. 191
Zhu, Weiqiang, Ian W. McBrearty, S. Mostafa Mousavi, William L. Ellsworth, and Gregory C. Beroza. 2021. “Earthquake Phase Association Using a Bayesian Gaussian Mixture Model.” Journal of Geophysical Research: Solid Earth, e2021JB023249. 191
M.E. Poli, G. Monegato, A. Zanferrari, E. Falcucci, A. Marchesini, S. Grimaz, P. Malisan, E. Del Pin (2014). Seismotectonic characterization of the western Carnic pre-alpine area between Caneva and Meduno (Ne Italy, Friuli). DPC-INGV-S1 Project “Base-knowledge improvement for assessing the seismogenic potential of Italy” (D6/a2.1). 193
E. Rizzo, V. Giampaolo, F. Mucchi, P. Boldrin, G. De Martino, M.E. Poli, G. Patricelli, A. Marchesini, R. Caputo (2024). Multiscale geophysical investigation on the Budoia-Aviano thrust system (NE Italy): first results. GNGTS 2024. 193
A. Rovida, M. Locati, R. Camassi, B. Lolli, P. Gasperini, A. Antonucci (2022). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4 193
De Matteis R., Convertito V., Napolitano F., Amoroso O., Terakawa T., Capuano P.; 2021: Pore fluid pressure imaging of the Mt. Pollino region (southern Italy) from earthquake focal mechanisms. Geophysical Research Letters, 48, e2021GL094552. https://doi.org/10.1029/2021GL094552 196
Iannace A., D’ Errico M., Vitale S.; 2004: Carta geologica dell’area compresa tra Maratea, Castrovillari e Sangineto. Stampa. 196
Napolitano F., De Siena L., Gervasi A., Guerra I., Scarpa R., La Rocca M.; 2020: Scattering and absorption imaging of a highly fractured fuid-filled seismogenetic volume in a region of slow deformation. Geosci. Front. 11 (3), 989-998. doi:10.1016/j.gsf.2019.09.014 196
Napolitano F., S. Gabrielli, L. De Siena, O. Amoroso, P. Capuano (2023). Imaging overpressurised fracture networks and geological barriers hindering fluid migrations across a slow deformation seismic gap. Scientific Reports 13:19680, https://doi.org/10.1038/s41598-023-47104-w 196
Pastori M., Margheriti L., et al.; 2021: The 2011-2014 Pollino Seismic Swarm: Complex Fault Systems Imaged by 1D Re ned Location and Shear Wave Splitting Analysis at the Apennines Calabrian Arc Boundary. Front. Earth Sci. 9:618293.doi: 10.3389/feart.2021.618293 196
Middle East Technical University; 2023: Preliminary reconnaissance report on February 6, 2023, Pazarcık Mw=7.7 and Elbistan Mw=7.6, Kahramanmaraş-Türkiye Earthquakes. Edited by K.Ö. Çetin, M. Ilgaç, G. Can and E. Çakır, Report N° METU/EERC 2023-01, Earthquake Engineering Research Center. 201
Pantosti D., Azzaro R., De Martini P.M., Moro M., Nappi R. and Pucci S.; 2014: QUI INGV - EMERGEO: un gruppo di lavoro INGV per lo studio degli effetti geologici cosismici. Progettazione Sismica, 2, 137-140. 201
Reitman N.G., Briggs R.W., Barnhart W.D., Thompson J.A., DuRoss C.B., Hatem A.E., Gold R.D., Akçiz S., Koehler R.D., Mejstrik J.D., Collett C.; 2023: Fault rupture mapping of the 6 February 2023 Kahramanmaraş, Türkiye, earthquake sequence from satellite data. U.S. Geological Survey data release, https://doi.org/10.5066/P985I7U2. 201
Grannell, J., Arroucau, P., Lebedev, S., Moellhoff, M., & Bean, C. J. (2018). A Local Magnitude Scale for Ireland and its Offshore Regions, Poster Presentation, ESC General Assembly 209
Goldstein, P., and J. A. Snoke. 2005. “SAC Availability for the IRIS Community.” DMS Electronic Newsletter 7 (1): 63. www.mathworks.com. 209
Goodman, R., Jones, G. L., Kelly, J., Slowey, E., & O'Neill, N. (2004). Geothermal energy exploitation in Ireland. 209
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D and layered models (pp. 101–134). Springer Netherlands 209
Malinverno, A., & Briggs, V. A. (2004). Expanded uncertainty quantification in inverse problems: Hierarchical bayes and empirical bayes. Geophysics, 69, 1005–1016. 209
Richter, C. F. (1935). An instrumental earthquake magnitude scale*. Bulletin of the Seismological Society of America, 25, 1–32. 209
Team, T. O. D. (2017). Obspy 1.0.3. 209
E. Rizzo1,2, V. Giampaolo2, F. Mucchi1, P. Boldrin1, G. De Martino2, M.E. Poli3, G. Patricelli1, A. Marchesini3, R. Caputo1 210
1 Dipartimento di Fisica e Scienze della Terra, University of Ferrara, Italy 210
2Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale (CNR-IMAA), Tito Scalo (PZ), Italy 210
3Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Italy 210
Poli M.E., Monegato G., Zanferrari A., Falcucci E., Marchesini A., Grimaz S., Malisan P., Del Pin E. (2014) Seismotectonic characterization of the western Carnic pre-alpine area between Caneva and Meduno (Ne Italy, Friuli). DPC-INGV-S1 Project “Base-knowledge improvement for assessing the seismogenic potential of Italy”. 211
Rizzo E., Colella, A., Lapenna, V. and Piscitelli, S. (2004). “High-resolution images of the fault controlled High Agri Valley basin (Southern Italy) with deep and shallow Electrical Resistivity Tomographies”. Physics and Chemistry of the Earth, 29, 321-327. 211
Rizzo E. & Valeria Giampaolo (2019) New deep electrical resistivity tomography in the High Agri Valley basin (Basilicata, Southern Italy), Geomatics, Natural Hazards and Risk, 10:1, 197-218, DOI: 10.1080/19475705.2018.1520150 211
Poli M.E.; Patricelli G.; Falcucci E.; Gori S.; Paiero G.; Rizzo E.; Marchesini A.; Caputo R. (2024). New palaeoseismological evidence of coseismic surface rupture across the Carnic Prealpine front (NE-Italy): the Budoia-Aviano thrust system. GNGTS 2024 (in this session). 211
Preliminary results of the Non-Double-Couple seismic sources in the Southern Apennines 212
P. Roselli1, L. Scognamiglio2, F. Di Luccio1, M. Palano3, G. Ventura1 212
1Istituto Nazionale di Geofisica e Vulcanologia, Roma 1 (Roma, Italy) 212
Dreger D.S. and Helmberger D.V.; 1993: Determination of source parameters at regional distances with 3-component sparse network data. J. Geophys. Res., 98, 8107-8125. 213
Dreger D.S.; 2003: Time Domain Seismic Moment Tensor INVersion. International Handbook of Earthquake and Engineering Seismology, Volume 81(B), pp 1627. 213
Ellsworth W.L.; 2013: Injection-induced earthquakes. Science, 341(6142). doi: 10.1126/science.1225942. 213
Frohlich C.; 1994: Earthquakes with Non-Double-Couple Mechanisms. Science, 264 (5160), 804 -809. doi: 10.1126/science.264.5160.804. 213
Hrubcova P., Doubravová J., Vavrycuk V.; 2021: Non-double-couple earthquakes in 2017 swarm in Reykjanes Peninsula, SW Iceland: Sensitive indicator of volcano-tectonic movements at slow spreading rift. Earth and Planetary Science Letters. 563. 116875. 10.1016/j.epsl.2021.116875. 213
Istituto Nazionale di Geofisica e Vulcanologia (INGV); 2010-2014: Rete Sismica Nazionale (RSN). doi: https://doi.org/10.13127/SD/X0FXnH7QfY. 213
Julian B.R., Miller A.D., Foulger G.R.; 1998: Non-Double-Couple earthquakes 1: Theory. Rev. Geophys., 36, 525-549. 213
Knoff, L. and Randall M.J.; 1970: The compensated linear-vector dipole. A possible mechanism for deep earthquakes. J. Gephys. Res., 75,1957-1963. 213
Kwiatek G., Martínez-Garzón P., Bohnhoff M.; 2016: hybridMT: A Matlab/Shell environment package for seismic moment tensor inversion and refinement. Seismol. Res. Lett., doi: 10.1785/0220150251. 213
Martínez-Garzón P., Kwiatek G., Bohnoff M., Dresen G.; 2017: Volumetric components in the earthquake source related to fluid injection and stress state. Geophys. Res. Lett., 44(2), 800-809, doi:10.1002/2016GL071963. 213
Napolitano F., Amoroso O., La Rocca M., Gervasi A., Gabrielli S., Capuano P.; 2021: Crustal Structure of the Seismogenic Volume of the 2010–2014 Pollino (Italy) Seismic Sequence From 3D P- and S-Wave Tomographic Images. Front. Earth Sci., Sec. Solid Earth Geophysics, 9. doi: 10.3389/feart.2021.735340. 214
Pastori M., Margheriti L., De Gori P., Govini A., Lucente F.P., Moretti M., Marchetti A., Di Giovambattista R., Anselmi M., De Luca P., Nardi A., Piana Agostinetti N., Latorre D., Piccinini D., Passarelli L., Chiarabba C.; 2021: The 2011–2014 Pollino Seismic Swarm: Complex Fault Systems Imaged by 1D Refined Location and Shear Wave Splitting Analysis at the Apennines–Calabrian Arc Boundary. Front. Earth Sci., Sec. Solid Earth Geophysics, 9. doi: 10.3389/feart.2021.618293. 214
Passarelli L., Roessler D., Aladino G., Maccaferri F., Moretti M., Lucente F.P., Braun T., De Gori P., Margheriti L., Woith H., Sebastian H., Eleonora R., Dahm T.; 2012: Pollino Seismic Experiment (2012-2014) [Data set]. Deutsches GeoForschungsZentrum GFZ. doi: 10.14470/9N904956. 214
Roselli P., Improta L., Kwiatek G., Martínez-Garzón P., Saccorotti G., Lombardi A.M.; 2023: Source mechanisms and induced seismicity in the Val d'Agri Basin (Italy). Geophysical Journal International, 234 (3), pp 1617–1627 214
Ross A., Foulger G.R., Julian B.R.; 1996: Non-double-couple earthquake mechanisms at The Geysers geothermal area California. Geophys. Res. Lett., 23(8), 877-880. doi: 10.1029/96GL00590. 214
Saraò A., Cocina O., Privitera E., Panza G.F.; 2010: The dynamics of the 2001 Etna eruption as seen by full moment tensor analysis. Geophys. J. Int., 181(2), 951-965. doi: 10.1111/j.1365-246X.2010.04547.x. 214
Zahradník J. and Sokos E.; 2018: ISOLA code for multiple-point source modeling –review. in Moment Tensor Solutions - A Useful Tool for Seismotectonics. 1–28 (Springer Natural Hazards, 2018). doi:10.1007/978-3-319-77359-9. 214
Zoback M.D.; 2007: Reservoir Geomechanics. Cambridge University Press, 449 pp. 214
G. Rossi1, G. Bressan 2, C. Barnaba 1, A. Peresan 1 215
1 National Institute of Oceanography and Applied Geophysics –OGS, Italy 215
2 formerly National Institute of Oceanography and Applied Geophysics –OGS, Italy 215
Baiesi, M., Paczuski, M.;2004: Scale-free networks of earthquakes and aftershocks, Phys. Rev. E., 69, 066106, doi:10.1103/PhysRevE.69.066106. 219
Bragato, P.L., Comelli, P., Saraò, A., Zuliani, D., Moratto, L., Poggi, V., Rossi, G., Scaini, C., Sugan, M., Barnaba, C., Bernardi, P., Bertoni, M., Bressan, G., Compagno, A., Del Negro, E., Di Bartolomeo, P., Fabris, P., Garbin, M., Grossi, M., Magrin, A., Magrin, E., Pesaresi, D., Petrovic, B., Plasencia Linares M.P., Romanelli, M., Snidarcig, A., Tunini, L., Urban, S., Venturini, E., Parolai, S.; 2021: The OGS–Northeastern Italy Seismic and Deformation Network: Current Status and Outlook, Seismological Research Letters 92 (3), 1704–1716, doi:10.1785/0220200372 219
Bressan, G., Barnaba, C., Gentili, S., Rossi, G.;2017: Information entropy of earthquake populations in northeastern Italy and western Slovenia, Physics of the Earth and Planetary Interiors, 271, 29–46, doi: 10.1016/j.pepi.2017.08.001. 219
Bressan G., Barnaba C., Peresan A., Rossi G.; 2021: Anatomy of seismicity clustering from parametric space-time analysis. Physics of the Earth and Planetary Interiors 320, 106787, doi:10.1016/j.pepi.2021.106787. 219
Bressan, G., Barnaba, C., Magrin, A., Rossi, G.; 2018a: A study on off-fault aftershock pattern at N-Adria microplate. J. Seismol., 22, 863-881, doi:10.1007/s10950-018-9737-x. 219
Bressan, G., Barnaba, C., Bragato, P., Ponton, M., and Restivo, A.; 2018b: Revised seismotectonic model of NE Italy and W Slovenia based on focal mechanism inversion, J. Seismol., 22, 1563–1578, doi:10.1007/s10950-018-9785-2. 219
Bressan, G., Barnaba, C., Bragato, P.L., Peresan, A., Rossi, G., Urban, S.; 2019: Distretti sismici del Friuli Venezia Giulia, Bollettino di Geofisica Teorica e Applicata, 60, s.3, s1-s74, doi: 10.4430/bgta0300. 220
Saraò, A., Sugan, M., Bressan, G., Renner, G., and Restivo, A.; 2021: A focal mechanism catalogue of earthquakes that occurred in the southeastern Alps and surrounding areas from 1928–2019, Earth Syst. Sci. Data, 13, 2245–2258, doi:10.5194/essd-13-2245-2021. 220
Ponton, M.; 2010: Architettura delle Alpi Friulane. Museo Friulano di Storia Naturale 52, Udine, 80 pp. 220
Rossi, G., Ebblin, C.;1990: Space (3-D) and space-time (4-D) Analysis of aftershock sequences: the Friuli (Ne Italy) case. Boll. Geof. Teor. Appl. 22, 37-49. 220
Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., (eds); 2016: CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. doi:http//doi.org/10.6092/INGV.IT-CPTI15. 220
Telesca, L., Lapenna, V., Lovallo, M.;2004: Information entropy analysis of seismicity of Umbria-Marche region (Central Italy). Nat. Haz. Earth Syst. Sci. 4, 691–695, doi: 10.5194/nhess-4-691-2004. 220
Varini, E., Peresan, A., Zhuang, J.; 2020: Topological Comparison Between the Stochastic and the Nearest-Neighbor Earthquake Declustering Methods Through Network Analysis. J. of Geophysical Research: Solid Earth, 125 (8), e2020JB019718, doi: 10.1029/2020JB019718 220
Zaliapin, I., Ben-Zion, Y.; 2013: Earthquake clusters in southern California I: Identification and stability, J. Geophys. Res. 118, 6, 2847–2864, doi:10.1002/jgrb.50179. 220
Rheological behaviour along the Hellenic Wadati-Benioff zone 221
D. Russo1,2 and R. Caputo1,2 221
Bocchini G.M., Brustle A., Becker D., Meier T., van Keken P.E., Ruscic M., Papadopoulos G.A., Rische M. and Friederich W.; 2018: Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity. Tectonophysics, 734-735, 96-118, doi: 10.1016/j.tecto.2018.04.002. 223
Halpaap F., Rondenay S. and Ottemoller L.; 2018: Seismicity, Deformation, and Metamorphism in the Western Hellenic Subduction Zone: New Constraints from Tomography. J. Geophys. Res.: Solid Earth, 123, 3000-3026, doi: 10.1002/2017JB015154. 223
Maggini M. and Caputo R.; 2020a: Sensitivity analysis for crustal rheological profiles: examples from the Aegean Region. Ann. Geophys., 63(3), SE334, doi: 10.4401/ag-8244. 223
Maggini M. and Caputo R.; 2020b: Rheological behaviour in collisional and subducting settings: inferences for the seismotectonics of the Hellenic Region. Turk. J. Earth Sci., 29, 381–405, doi: 10.3906/yer-1909-4. 223
Maggini M. and Caputo R.; 2021: Seismological data versus rheological modelling: comparisons across the Aegean Region for improving the seismic hazard assessment. J. Struct. Geol., 145, 104312, doi: 10.1016/j.jsg.2021.104312. 223
Maggini M., Russo D. and Caputo R.; 2023: A 3D rheological model for the Aegean Region: Mechanical layering and seismotectonic implications. J. Struct. Geol., 175, 104956, 1-19, doi: 10.1016/j.jsg.2023.104956. 223
Meier T., Rische M., Endrun B., Vafidis A. and Harjes H.-P.; 2004: Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics, 383, 149 – 169, doi: 10.1016/j.tecto.2004.02.004. 223
Tracking the evolution of seismic sequences in the normal fault environment of Southern Apennines using deep catalogues 224
Bernard, P., & Zollo, A. (1989). The Irpinia (Italy) 1980 earthquake: detailed analysis of a complex normal faulting. Journal of Geophysical Research: Solid Earth, 94(B2), 1631-1647. 225
Chamberlain, C. J., Hopp, C. J., Boese, C. M., Warren‐Smith, E., Chambers, D., Chu, S. X., Kostantinos, M. & Townend, J. (2018). EQcorrscan: Repeating and near‐repeating earthquake detection and analysis in Python. Seismological Research Letters, 89(1), 173-181. 225
Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., Belardinelli, M.E. & Avouac, J. P. (2017). Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters, 44(15), 7706-7714. 225
Kaviris, G., Elias, P., Kapetanidis, V., Serpetsidaki, A., Karakonstantis, A., Plicka, V., ... & Bernard, P. (2021). The western Gulf of Corinth (Greece) 2020–2021 seismic crisis and cascading events: First results from the Corinth Rift Laboratory Network. The Seismic Record, 1(2), 85-95. 226
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications, 11(1), 3952. 226
Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767-771. 226
Rubin, A. M., Gillard, D., & Got, J. L. (1999). Streaks of microearthquakes along creeping faults. Nature, 400(6745), 635-641. 226
Rubinstein, J. L., & Beroza, G. C. (2007). Full waveform earthquake location: Application to seismic streaks on the Calaveras fault, California. Journal of Geophysical Research: Solid Earth, 112(B5). 226
Scotto di Uccio, F., Scala, A., Festa, G., Picozzi, M., & Beroza, G. C. (2023). Comparing and integrating artificial intelligence and similarity search detection techniques: application to seismic sequences in Southern Italy. Geophysical Journal International, 233(2), 861-874. 226
Sugan, M., Campanella, S., Chiaraluce, L., Michele, M., & Vuan, A. (2023). The unlocking process leading to the 2016 Central Italy seismic sequence. Geophysical Research Letters, 50(5), e2022GL101838. 226
Vuan, A., Brondi, P., Sugan, M., Chiaraluce, L., Di Stefano, R., & Michele, M. (2020). Intermittent slip along the Alto Tiberina low‐angle normal fault in central Italy. Geophysical Research Letters, 47(17), e2020GL089039. 226
Westaway, R., & Jackson, J. (1987). The earthquake of 1980 November 23 in Campania—Basilicata (southern Italy). Geophysical Journal International, 90(2), 375-443. 226
Yoon, C. E., O’Reilly, O., Bergen, K. J., & Beroza, G. C. (2015). Earthquake detection through computationally efficient similarity search. Science advances, 1(11), e1501057. 226
Yoon, C. E., Huang, Y., Ellsworth, W. L., & Beroza, G. C. (2017). Seismicity during the initial stages of the Guy‐Greenbrier, Arkansas, earthquake sequence. Journal of Geophysical Research: Solid Earth, 122(11), 9253-9274. 226
D’Agostino N.; 2014: Complete seismic release of tectonic strain and earthquake recurrence in the Apennines (Italy). Geophys. Res. Lett., 41(4), 1155-1162, DOI 10.1002/2014GL059230. 228
Déprez A., Doubre C., Masson F. and Ulrich P.; 2013: Seismic and aseismic deformation along the East African Rift System from a reanalysis of the GPS velocity field of Africa. Geophys. J. Int., 193, 1353-1369, DOI 10.1093/gji/ggt085. 228
Ferranti L., Palano M., Cannavò F., Mazzella M.E., Oldow J.S., Gueguen E., Mattia M. and Monaco C.; 2014: Rates of geodetic deformation across active faults in southern Italy. Tectonophysics, 621, 101-122, DOI 10.1016/j.tecto.2014.02.007. 228
ISIDe Working Group 2007: Italian Seismological Instrumental and Parametric Database (ISIDe). Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available online: DOI 10.13127/ISIDE (accessed on 18 December 2023). 228
Kostrov V.; 1974: Seismic moment and energy of earthquakes, and seismic Row of rock. Izv. Acad. Sci. USSR Phys. Solid Earth, 1, 23-44. 228
Masson F., Chéry J., Hatzfeld D., Martinod J., Vernant P., Tavakoli F. and Ghafory‐Ashtiani M.; 2005: Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys. J. Int., 160, 217-226, DOI 10.1111/j.1365‐246X.2004.02465.x. 228
Mazzotti S., Leonard L.J., Cassidy J.F., Rogers G.C. and Halchuk S.; 2011: Seismic hazard in western Canada from GPS strain rates versus earthquake catalog. J. Geophys. Res., 116, B12310, DOI 10.1029/2011JB008213. 228
Meletti C., Galadini F., Valensise G., Stucchi M., Basili R., Barba S., Vannucci G. and Boschi E.; 2004: Zonazione sismogenetica ZS9 [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV), DOI 10.13127/sh/zs9. 228
Pancha A., Anderson J. G. and Kreemer C.; 2006: Comparison of seismic and geodetic scalar moment rates across the Basin and Range Province. Bull. Seismol. Soc. Am., 96, 11-32, DOI 10.1785/0120040166. 228
Palano M., Imprescia P., Agnon A. and Gresta S.; 2018: An improved evaluation of the seismic/geodetic deformation‐rate ratio for the Zagros Fold‐and‐Thrust collisional belt. Geophys. J. Int., 213, 194-209, DOI 10.1093/gji/ggx524. 228
Palano M., Ursino A., Spampinato S., Sparacino F., Polonia A. and Gasperini L.; 2020: Crustal deformation, active tectonics and seismic potential in the Sicily Channel (Central Mediterranean), along the Nubia-Eurasia plate boundary. Scientific Reports, 10, 21238, DOI 10.1038/s41598-020-78063-1. 228
Sparacino F., Palano M., Peláez J.A. and Fernández J.; 2020: Geodetic deformation versus seismic crustal moment-rates: insights from the Ibero-Maghrebian region. Remote Sensing, 12(6), 952, DOI 10.3390/rs12060952. 228
Sparacino F., Galuzzi B.G., Palano M., Segou M. and Chiarabba C.; 2022: Seismic coupling for the Aegean-Anatolian region. Earth-Science Reviews, 228, 103993, DOI 10.1016/j.earscirev.2022.103993. 228
Analysis of the 1982-2016 seismicity of Aswan region (south Egypt) 229
T.A. Stabile1, E.R. Fat-HeIbary2, V. Serlenga1, S. Panebianco1,3, P. Tizzani4, R. Castaldo4, L. Telesca1, E.M. El-Amin2, H. Ahmed2 229
1 Consiglio Nazionale delle Ricerche (CNR-IMAA), Italy 229
2 National Research Institute of Astronomy and Geophysics, Egypt 229
3 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Italy 229
4 Consiglio Nazionale delle Ricerche (CNR-IREA), Italy 229
Guidoboni E.; 1984: Riti di calamità: terremoti a Ferrara nel 1570-74, Quaderni Storici 55/ a. XIX, n. 1. 237
Guidoboni E., Valensise G.; 2023: L’Italia dei Terremoti, l’Azzardo Sismico delle Città. Vol. 2, Centro-Nord. Fondazione CNI, 668 pp. 237
Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G.; 2018: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). 237
Guidoboni E., Ferrari G., Tarabusi G., Sgattoni G., Comastri A., Mariotti D., Ciuccarelli C., Bianchi M.G., Valensise G.; 2019: CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Scientific Data 6, Article Number: 80 (2019). 237
Locati M., Camassi R., Rovida A., Ercolani E., Bernardini F., Castelli V., Caracciolo C.H., Tertulliani A., Rossi A., Azzaro R., D’amico S., Conte S., Rocchetti E.; 2016: DBMI15, the 2015 version of the Italian Macroseismic Database. Istituto Nazionale di Geofisica e Vulcanologia (INGV). 237
C. Strumia1, A. Trabattoni2, M. Supino3, M. Baillet2, D. Rivet2, G. Festa1 238
1Università di Napoli Federico II, Physics Department, Complesso Monte S. Angelo, Napoli, Italy. 238
2Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD, Géoazur. 238
3Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Roma, Italy. 238
1 National Institute of Oceanography and Applied Geophysics - OGS, Italy 241
Anikiev D., Birnie C., bin Waheed U., Alkhalifah T., Gu C., Verschuur D.J., Eisner L.; 2023. Machine learning in microseismic monitoring. Earth-Science Reviews. 239:104371. https://doi.org/10.1016/j.earscirev.2023.104371. 243
Mousavi S.M., Horton S.P., Langston C.A., Samei B.; 2016. Seismic Features and Automatic Discrimination of Deep and Shallow Induced-Microearthquakes Using Neural Network and Logistic Regression. Geophys J Int. 207(1):29-46. https://doi.org/10.1093/gji/ggw258. 243
Peruzza L., Romano M.A., Guidarelli M., Moratto L., Garbin M., Priolo E.; 2022. An unusually productive microearthquake sequence brings new insights to the buried active thrust system of Montello (Southeastern Alps, Northern Italy). Front Earth Sci. 10:1044296. https://doi.org/10.3389/feart.2022.1044296. 243
Sugan M., Peruzza L., Romano M.A., Guidarelli M., Moratto L., Sandron D., Plasencia Linares M.P., Romanelli M.; 2023. Machine learning versus manual earthquake location workflow: testing LOC-FLOW on an unusually productive microseismic sequence in northeastern Italy. Geomatics, Natural Hazards and Risk, 14:1. https://doi.org/10.1080/19475705.2023.2284120. 243
Zhang M., Liu M., Feng T., Wang R., Zhu W.; 2022. LOC-FLOW: An End-to-End Machine-Learning-Based High-Precision Earthquake Location Workflow. Seismol Res Lett. 93(5):2426-2438. https://doi.org/10.1785/0220220019. 243
Zhu W., Beroza G.C.; 2018. PhaseNet: A deep-neural-network based seismic arrival-time picking method. Geophys J Int. 216(1): 261–273. https://doi.org/10.1093/gji/ggy423. 243
SUPERSTUDIES: an approach for integrating macroseismic datasets of different nature 244
A. Tertulliani1, A. Antonucci2, F. Bernardini3, V. Castelli3, E. Ercolani3, L. Graziani1, A. Maramai1 , M. Orlando1, A. Rossi1, T. Tuvè4 244
I Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy 244
2 Istituto Nazionale di Geofisica e Vulcanologia, Milano, Italy 244
3 Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy 244
4 Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy 244
Bernardini F., Camassi R., Castelli V., Ercolani E., Frapiccini M., Vannucci G., Giovani L., Tertulliani A.; 2003: Rilievo macrosismico degli effetti prodotti dalla sequenza sismica iniziata il 14 settembre 2003 (Appennino Bolognese). Rapporto tecnico QUEST, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, 10 pp. https://doi.org/10.13127/QUEST/20030914 246
Gasparini C., Conte S., Vannucci C. (ed); 2011: Bollettino macrosismico 2001-2005. Istituto Nazionale di Geofisica e Vulcanologia, Roma. CD-ROM 246
Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G.; 2018: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). doi: https://doi.org/10.6092/ingv.it-cfti5 246
Locati, M., R. Camassi, A. Rovida, E. Ercolani, F. Bernardini, V., Castelli, C. H. Caracciolo, A. Tertulliani, A. Rossi, R. Azzaro, et al.; 2019: Database macrosismico Italiano (DBMI15), versione 2.0, Istituto Nazionale di Geofisica e Vulcanologia (INGV), doi: 10.13127/DBMI/DBMI15.2 . 246
Rovida A., Locati M., Antonucci A., Camassi R. (a cura di); 2017: Archivio Storico Macrosismico Italiano (ASMI). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/asmi 246
Rovida, A., M. Locati, R. Camassi, B. Lolli, and P. Gasperini; 2020: The Italian earthquake catalogue CPTI15, Bull. Earthq. Eng. 18, 2953–2984, doi: 10.1007/s10518-020-00818-y 246
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P., Antonucci A.; 2022: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4 246
Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G.; 2018: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). doi: https://doi.org/10.6092/ingv.it-cfti5 247
Rovida, A., M. Locati, R. Camassi, B. Lolli, and P. Gasperini; 2020: The Italian earthquake catalogue CPTI15, Bull. Earthq. Eng. 18, 2953–2984, doi: 10.1007/s10518-020-00818-y 247
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P., Antonucci A.; 2022: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4 247
Recent activity of the Stradella fault (Emilia Arc, northern Italy) by a multi-scale approach 248
Acknowledgments 249
Integrated analysis of geophysical data: a case study from Central Italy 250
M.M. Tiberti1, F.E. Maesano1, M. Buttinelli1, P. De Gori1, F. Ferri2, L. Minelli1, M. Di Nezza1, C. D'Ambrogi2 250
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 250
2Istituto Superiore per la Protezione e la Ricerca Ambientale, Servizio Geologico d’Italia, Rome, Italy 250
G. Toffol1, G. Pennacchioni1, L. Menegon2, D. Wallis3, M. Faccenda1, A. Camacho4, M. Bestmann5 251
1 Department of Geosciences, University of Padova, Padva, Italy 251
2 Department of Geosciences, University of Oslo, Oslo, Norway 251
3 Department of Earth Sciences, University of Cambridge, Cambridge, UK 251
4 Department of Geological Sciences, University of Manitoba, Winnipeg, Canada 251
5 Department of Geology, University of Vienna, Wien, Austria 251
G. Valensise1, F. Donda2, A. Tamaro2, S. Parolai3 252
1 INGV, Rome, Italy 252
2 OGS, Trieste, Italy 252
3 University of Trieste, Italy 252
References 254
Bonini L., Toscani G., Seno S.; 2014: Three-dimensional segmentation and different rupture behaviour during the 2012 Emilia seismic sequence (Northern Italy). Tectonophysics, 630, 33–42, DOI: 10.1016/j.tecto.2014.05.006. 254
Carafa M. M. C., Valensise G., Bird P.; 2017: Assessing the seismic coupling of shallow continental faults and its impact on seismic hazard estimates: a case-study from Italy. Geophys. J. Int., 209(1), 32–47, DOI: 10.1093/gji/ggx002. 254
DISS Working Group; 2021: Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia (INGV), DOI: 10.13127/diss3.3.0. 254
Kanamori, H. Great earthquakes at island arcs and the lithosphere. Tectonophysics, 12, 187–198 (1971). 254
Mucciarelli M., Donda F., Valensise G.; 2015: Earthquakes and depleted gas reservoirs: which comes first? Natural Hazards and Earth System Sciences, 15(10), 2,201-2,208, DOI: 10.5194/nhess- 15-2201-2015. 254
Nissen E., Tatar M., Jackson J. A., Allen M. B.; 2011: New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophys. J. Int., 186, 928–944, DOI: 10.1111/j.1365246X.2011.05119.x. 254
Valensise G., Donda F., Tamaro A., Parolai S.; 2022: Gas fields and large shallow seismogenic reverse faults are anticorrelated. Scientific Reports, 12(1), 1,827, DOI: 10.1038/s41598- 022-05732-8. 254
Investigating the Influence of Coulomb Stress Transfer in the Activity of the Central Apennine Fault System (CAFS) Over the Last Millennium 255
G. Valentini1,2., T. Volatili1, P. Galli3,4, E. Tondi1,2 255
Chiarabba C. and De Gori P.; 2016: The seismogenic thickness in Italy: constraints on potential magnitude and seismic hazard. Terra Nova, 28(6), 402-408. 261
Galderisi A. and Galli P.; 2020: Coulomb stress transfer between parallel faults. The case of Norcia and Mt Vettore normal faults (Italy, 2016 Mw 6.6 earthquake). Results in Geophysical Sciences, 1, 100003. 261
Galli P., Galderisi A., Messina P. and Peronace E.; 2022: The Gran Sasso fault system: Paleoseismological constraints on the catastrophic 1349 earthquake in Central Italy. Tectonophysics, 822, 229156. 261
Gasparini C., Iannaccone G. and Scarpa R.; 1985: Fault-plane solutions and seismicity of the Italian peninsula. Tectonophysics 117, 59–78. 261
Gupta A. and Scholz C. H.; 2000: A model of normal fault interaction based on observations and theory. Journal of structural Geology, 22(7), 865-879. 261
ISIDe Working Group; 2007: Italian Seismological Instrumental and Parametric Database (ISIDe). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ISIDE 261
King G. C., Stein R. S. and Lin, J.; 1994: Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953. 261
Lin J. and Stein R. S.; 2004: Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults. Journal of Geophysical Research: Solid Earth, 109(B2). 261
Mildon Z. K., Toda S., Faure Walker J. P. and Roberts G. P.; 2016: Evaluating models of Coulomb stress transfer: Is variable fault geometry important?. Geophysical Research Letters, 43(24), 12-407. 261
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. and Antonucci A.; 2022: Catalogo Parametrico dei Terremoti Italiani CPTI15, versione 4.0. 261
Toda S., Stein R. S., Richards‐Dinger K. and Bozkurt S. B.; 2005: Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5). 261
Valentini G., Volatili T., Galli P. and Tondi E.; 2023: New methodological approach in the evaluation of faults interaction: insights from the central Apennine fault system. Bulletin of Geophysics and Oceanography. 261
Chamberlain C. J., Hopp C. J., Boese C. M., Warren‐Smith E. , Chambers D., Chu S. X., Michailos K., Townend J. (2018). EQcorrscan: Repeating and Near‐Repeating Earthquake Detection and Analysis in Python. Seismological Research Letters 2017; 89 (1): 173–181. https://doi.org/10.1785/0220170151 263
Zhu, W., & Beroza G. B. (2018). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International, 216(1), 261-273. 263
Istituto Nazionale di Geofisica e Vulcanologia (Rome, Italy) 264
Amoroso O., Russo G., De Landro G., Zollo A., Garambois S., Mazzoli S., Parente M., Virieux J.; 2017: From velocity and attenuation tomography to rock physical modeling: Inferences on fluid-driven earthquake processes at the Irpinia fault system in southern Italy. Geophys. Res. Lett., 44, 6752–6760. 266
Chiodini G., Cardellini C., Di Luccio F., Selva J., Frondini F., Caliro S., Rosiello A., Beddini G., Ventura G.; 2020: Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Sci. Adv., 6, eabc2938. 266
Chiodini G.; 2014: Gas emissions and related hazard in Italy. Mem. Descr. Carta Geol. d’It., XCVI, 189-194. In Italian 266
D’Agostino N., Silverii F., Amoroso O., Convertito V., Fiorillo F., Ventafridda G., Zollo A.; 2018: Crustal deformation and seismicity modulated by groundwater recharge of karst aquifers. Geophys. Res. Lett., 45, 12, 253–262. 266
Di Luccio F., Palano M., Chiodini G., Cucci L., Piromallo C., Sparacino F., Ventura G., Improta L. et alii; 2022: Geodynamics, geophysical and geochemical observations, and the role of CO2 degassing in the Apennines. Earth-Science Reviews, 234, 104236. 266
Fiorillo F., Guadagno F.M.; 2010: Karst spring discharges analysis in relation to drought periods, using SPI. Water Resource Manage, 24:1867-1884. 266
Improta L., Bonagura M., Capuano P., Iannaccone G.; 2003: An integrated geophysical investigation of the upper crust in the epicentral area of the 1980, Ms=6.9, Irpinia earthquake (Southern Italy). Tectonophysics, 361, 139-169. 266
Improta L., Corciulo M. (2006): Controlled source nonlinear tomography: A powerful tool to constrain tectonic models of the Southern Apennines orogenic wedge, Italy. Geology, 34 (11): 941–944. 266
Minissale A.; 2004: Origin, transport and discharge of CO2 in central Italy. Earth Sci. Rev. 66, 89–141. 266
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P.; 2020: The Italian earthquake catalogue CPTI15. Bulletin of Earthquake Engineering, 18(7), 2953-2984. 266
Rovida A., Locati M., Camassi R., Lolli, B., Gasperini P., Antonucci A.; 2022: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). 266
Vannoli P., Martinelli G., Valensise G.; 2021: The Seismotectonic Significance of Geofluids in Italy. Front. Earth Sci., 9:579390. 266
VIDEPI website, available at: https://www.videpi.com/videpi/videpi.asp. Accessed on 15 December 2023 266
Zhang J.; 2011: Pore pressure prediction from well logs: methods, modifications, and new approaches. Earth-Science Reviews, 108, 50-67. 267
Akinci, A., Galadini, F., Pantosti, D., Petersen, M., Malagnini, L., & Perkins, D. (2009). Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the Central Apennines, Italy. Bulletin of the Seismological Society of America, 99(2A), 585-610. 272
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., ... & Boschi, E. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy's earthquake geology. Tectonophysics, 453(1-4), 20-43. 272
Bordoni, P., Gori, S., Akinci, A., Visini, F., Sgobba, S., Pacor, F., ... & Doglioni, C. (2023). A site-specific earthquake ground response analysis using a fault-based approach and nonlinear modeling: The Case Pente site (Sulmona, Italy). Engineering Geology, 314, 106970. 272
Galadini, F., & Galli, P. (2000). Active tectonics in the central Apennines (Italy)–input data for seismic hazard assessment. Natural Hazards, 22, 225-268. 272
Galli, P., Giaccio, B., Peronace, E., & Messina, P. (2015). Holocene paleoearthquakes and early–late pleistocene slip rate on the Sulmona fault (central Apeninnes, Italy). Bulletin of the Seismological Society of America, Vol. 105, No. 1, pp. 1–13, February 2015, doi: 10.1785/0120140029 272
Galli, P., & Pallone, F. (2019). Reviewing the intensity distribution of the 1933 earthquake (Maiella, Central Italy). Clues on the seismogenic fault. Alpine and Mediterranean Quaternary, 32(2), 93-100. 272
Gironelli, V., Volatili, T., Luzi, L., Brunelli, G., Zambrano, M., & Tondi, E. (2023). Ground motion simulations of historical earthquakes: the case study of the Fabriano (1741, Mw= 6.1) and Camerino (1799, Mw= 6.1) earthquakes in central Italy. Bulletin of Earthquake Engineering, 21(13), 5809-5830. 272
Gori, S., Giaccio, B., Galadini, F., Falcucci, E., Messina, P., Sposato, A., & Dramis, F. (2011). Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy). International journal of earth sciences, 100, 157-171. 272
Locati M., Camassi R., Rovida A., Ercolani E., Bernardini F., Castelli V., Caracciolo C.H., Tertulliani A., Rossi A., Azzaro R., D’Amico S., Antonucci A. (2022). Database Macrosismico Italiano (DBMI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). 272
Mori, F., Mendicelli, A., Moscatelli, M., Romagnoli, G., Peronace, E., & Naso, G. (2020). A new Vs30 map for Italy based on the seismic microzonation dataset. Engineering Geology, 275, 105745. 272
Patacca, E., Scandone, P., Di Luzio, E., Cavinato, G. P., & Parotto, M. (2008). Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics, 27(3). 272
Petricca, P., Barba, S., Carminati, E., Doglioni, C., & Riguzzi, F. (2015). Graviquakes in italy. Tectonophysics, 656, 202-214. 272
Pomposo, G., & Pizzi, A. (2009). Evidenze di tettonica recente ed attiva nel settore esterno sepolto dell'Appennino centrale abruzzese. In Rendiconti online della Società Geologica Italiana (Vol. 5, pp. 176-178). Società Geologica Italiana. 273
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P., Antonucci A. (2022). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4 273
Mai, P. Martin; Aspiotis, Theodoros; Aquib, Tariq Anwar; Cano, Eduardo Valero; Castro‐Cruz, David; Espindola‐Carmona, Armando; Li, Bo; Li, Xing; Liu, Jihong; Matrau, Rémi; Nobile, Adriano; Palgunadi, Kadek Hendrawan; Ribot, Matthieu; Parisi, Laura; Suhendi, Cahli; Tang, Yuxiang; Yalcin, Bora; Klinger, Yann; Jónsson, Sigurjón (2023). "The Destructive Earthquake Doublet of 6 February 2023 in South‐Central Türkiye and Northwestern Syria: Initial Observations and Analyses". The Seismic Record. 3 (2): 105–115. doi:10.1785/0320230007 276
Reitman, Nadine G, Richard W. Briggs, William D. Barnhart, Jessica A. Thompson Jobe, Christopher B. DuRoss, Alexandra E. Hatem, Ryan D. Gold, John D. Mejstrik, and Sinan Akçiz (2023) Preliminary fault rupture mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes. DOI: https://doi.org/10.5066/P985I7U2 276
References 279
Ellsworth W. L.; 2013: Injection-induced earthquakes. Science, 341(6142), 1225942. 279
Neely J. S., Salditch L., Spencer B. D. and Stein S.; 2023: A More Realistic Earthquake Probability Model Using Long‐Term Fault Memory. Bull. Seismol. Soc. Am., 113(2), 843-855. 279
Rice J. R. and Cocco M.; 2007: Seismic fault rheology and earthquake dynamics. Tectonic faults: Agents of change on a dynamic earth, 99-137. 279
Ross Z. E., Hauksson E. and Ben-Zion, Y.; 2017: Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Sci. Adv., 3(3), e1601946. 279
Tan Y. J., Waldhauser F., Ellsworth W. L., Zhang M., Zhu W., Michele M., ... and Segou M.; 2021: Machine-learning-based high-resolution earthquake catalog reveals how complex fault structures were activated during the 2016–2017 Central Italy sequence. The Seismic Record, 1(1), 11-19. 279
Zaccagnino D. and Doglioni C.; 2022: The impact of faulting complexity and type on earthquake rupture dynamics. Commun. Earth Environ., 3(1), 258. 279
The 1783 Calabria earthquake sequence: a review of the coseismic effects on the natural environment 280
C. Zei1,2, C. Ciuccarelli1, M.G. Bianchi1, G. Tarabusi1, D. Mariotti1 280
Bianchi M.G., Tarabusi G., Ciuccarelli C., Maresci M., Baranello S., Taccone R.C., Ferrari G.; 2022: CFTIvisual, Atlante delle fonti visive dei terremoti italiani. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/cfti/visual 282
Boschi E., Guidoboni E., Ferrari G., Mariotti D., Valensise G., Gasperini P. (eds); 200: Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997. Annali di Geofisica, 43, 4, 609-868. 282
Boschi E., Ferrari G., Gasperini P., Guidoboni E., Smriglio G., Valensise G. (eds); 1995: Catalogo dei forti terremoti in Italia dal 461 a.C. al 1980. ING-SGA, Bologna, 970 pp. 282
Boschi E., Guidoboni E., Ferrari G., Valensise G. and Gasperini P. (eds.); 1997: Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990, vol. 2. ING-SGA, Bologna, 644 pp. 282
Cucci L.; 2022: NW-dipping versus SE-dipping causative faults of the 1783 M7.1 Southern Calabria (Italy) earthquake: The contribution from the analysis of the coseismic hydrological changes. Front. Earth Sci. 10:987731. doi:10.3389/feart.2022.987731 282
Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G.; 2018: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.6092/ingv.it-cfti5 282
Guidoboni E., Ferrari G., Tarabusi G., Sgattoni G., Comastri A., Mariotti D., Ciuccarelli C., Bianchi M.G., Valensise G.; 2019: CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area, Scientific Data 6, Article number: 80. https://doi.org/10.1038/s41597-019-0091-9 282
Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA); IFFI, Inventario dei Fenomeni Franosi in Italia. https://www.progettoiffi.isprambiente.it/ 282
Sarconi M.; 1784: Istoria de’ fenomeni del tremoto avvenuto nelle Calabrie, e nel Valdemone nell’anno 1783 posta in luce dalla Reale Accademia delle Scienze e delle Belle Lettere di Napoli, Napoli. 282
Tarabusi G., Ferrari G., Ciuccarelli C., Bianchi M.G., Sgattoni G., Comastri A., Mariotti D., Valensise G., Guidoboni E.; 2020: CFTILab, Laboratorio Avanzato di Sismologia Storica. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CFTI/CFTILAB 282
Vivenzio G.; 1783: Istoria e teoria de’ tremuoti in generale ed in particolare di quelli della Calabria, e di Messina del MDCCLXXXIII, Napoli. 282
Zei C., Tarabusi G., Ciuccarelli C., Mariotti D., Baranello S., Sgattoni G., Burrato P., CFTI working Group; 2023: A new database of historical earthquake-induced landslides in Italy, 41st National Conference of the GNGTS, Bologna https://gngts.ogs.it/atti/GNGTS2023/HTML/212/ 283
12_Abstract_GNGTS2024.pdf 289
Imaging the North-South deformation through the application of potential theory to InSAR measurements 289
Barone1, P. Mastro1, A. Pepe1, M. Fedi2, P. Tizzani1, R. Castaldo1 289
1 Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Consiglio Nazionale delle Ricerche (CNR), Napoli, Italia. 289
2 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università degli Studi di Napoli Federico II, Napoli, Italia. 289
Synthetic Aperture Radar Interferometry (InSAR) is a well-established technique for monitoring and modeling the ground deformation field in volcanic areas and geothermal fields. Specifically, when SAR images are acquired along both the ascending and descending satellites orbits, the retrieval of the East-West (E-W) and vertical components of the related three-dimensional (3D) ground deformation field is conceivable; the North-South (N-S) one is usually not available and different techniques have been proposed to solve this task. However, the resolutions and accuracies of these retrieved measurements are not always satisfactory. 289
Here, we show a new approach for the retrieval of the N-S component and the reconstruction of the 3D ground deformation field in volcanic frameworks. The proposed methodology is based on the theory of the potential functions and the integral transforms of potential fields. We test our workflow on synthetic deformation datasets computed according to the commonly used analytic volcanic deformation sources (i.e., Mogi’s, Okada’s and Yang’s models). The results show that the proposed technique allows the retrieval of the N-S deformation with negligible errors with respect to the expected one. 289
We then consider this approach to reconstruct the 3D ground deformation field that occurred at Sierra Negra volcano (Galapagos Islands, Ecuador) during the 2017 – 2018.5 unrest, which has led to the eruption. The comparison with GNSS data shows that we are able to image the pre-eruptive N-S deformation for this volcano with a mean error of about 5%, which is a surprising result for this kind of application. 289
The next step of this study is the modeling of the volcanic deformation sources through the use of the retrieved 3D ground deformation field and showing the impact in the framework of the ambiguity solving. 289
Introduction 290
Overview of the methods 292
Results 292
Concluding remarks 294
Acknowledgements 295
References 295
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Arezzo, Italy 296
2 Università degli Studi “Roma Tre”, Roma, Italy 296
3 Istituto Nazionale di Geofisica e Vulcanologia, Sezione ONT, Roma, Italy 296
4 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Roma, Italy 296
5 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Milazzo, Italy 296
Fig. 1 – Example of an earthquake and rumble located on 22/07/2020 at 19:36 in the area of Montecassino (FR). Note the occurrence of three small seismic events (coloured traces) prior to the infrasound signal (black). 297
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli, Osservatorio Vesuviano, Napoli, Italy 313
Trans-dimensional Mt. Etna P-wave anisotropic imaging 315
G. Del Piccolo1, R. Lo Bue1, B.P. VanderBeek1, M. Faccenda1, O. Cocina2, M. Firetto Carlino2, E. Giampiccolo2, A. Morelli3, J.S. Byrnes4 315
1 Dipartimento di Geoscienze, Università degli Studi di Padova 315
Nonlinear convective motion of the asthenosphere and the lithosphere melting. A model for the birth of a volcano 328
1 Department of Mathematics and Physics, Università della Campania "Luigi Vanvitelli", Caserta, Italy. 328
1 National Institute of Geophysics and Volcanology – Palermo (INGV, Italy) 349
Fig. 1 – Maps showing the position of Panarea Island in Southeastern Tyrrhenian Sea (red marker in left panel) and the position of the investigated vent (cyan marker in right panel). 350
Fig. 2 – Power Spectral Density (PSD) (panel a) and Pressure Power Spectrum (panel b) of 04/10/2022. 351
Fig. 3 – Charts showing the Spectrograms recorded on 04/10/2022 on which the inversion range is indicated (red lines). 351
b value tomography at Campi Flegrei: enlightening different rheological behaviour in volcanic areas 357
2 Department of Mathematics and Physics, Università della Campania "Luigi Vanvitelli", Caserta, Italy. 357
13_Abstract_GNGTS2024.pdf 365
1 Department of Physics, University of Salerno, Fisciano, Italy 365
Amoruso A. and Crescentini L.; 2022: Clues of Ongoing Deep Magma Inflation at Campi Flegrei Caldera (Italy) from Empirical Orthogonal Function Analysis of SAR Data. Remote Sens., 14, 5698, DOI 10.3390/rs14225698. 365
C. Braitenberg 366
Department of Mathematics, Informatics and Geosciences (MIGe), University of Trieste, Trieste, Italy, 366
1 Università degli Studi di Catania, Catania, Italy 368
2 Università degli Studi di Ferrara, Ferrara, Italy 368
3 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS, Trieste, Italy 368
Fig. 1 – IGM95 points reoccupied during the 2023 campaigns 368
Fig. 2 – Velocity field obtained by IGM95 points. 370
Fig. 1 - Main working screen of the open-source SAR-TOOL software. In particular, the figure shows a work session related to the interactive selection and addition of input data required by the SISTEM algorithm, featuring a terminal on the right showing both the parameters entered and those calculated by the algorithm. 380
Fig. 2 - Examples of products obtained through SAR-TOOL. (a) Modelling of a synthetic DEM and a spherical Mogi source located at a depth of 2000 metres above sea level; (b) Visualisation of a phase interferogram relative to a ground deformation period at Etna volcano (Italy); (c) Output of the displacements generated by a spherical Mogi source and calculated by the SISTEM algorithm through interaction with 60 synthetic GPS points arranged in a random geometry within the grid. 381
Discontinuities affect the Earth’s dynamics, yet the Earth is often represented in geodynamical models as a continuous material. The challenge of representing discontinuities in numerical models has been addressed in several ways in literature. The split node method, originally introduced by Jungels (1973) and Jungels and Frazier (1973) for elastic rheology and then modified by Melosh and Raefsky (1981) to simplify its implementation, allows the introduction of discontinuity into a finite element model by imposing an a-priori slip at a designated node, where the displacement depends on the element which the node is referred to. Originally, this method requires that the discontinuity’s geometry and slip are pre-established. 386
Jungels P.H.; 1973: Models of tectonic processes associated with earthquakes. PhD thesis. 387
Jungels P.H., Frazier G.A. Frazier; 1973: Finite element analysis of the residual displacements for an earthquake rupture: source parameters for the San Fernando earthquake. Journal of Geophysical Research. 387
Marotta A.M., Restelli F., Bollino A., Regorda A., Sabadini R.; 2020: The static and time-dependent signature of ocean-continent and ocean-ocean subduction: The case studies of Sumatra and Mariana complexes. Geophysical Journal International. 387
Melosh H.J., Raefsky A.; 1981: A simple and efficient method for introducing faults into finite element computations. Bulletin of the Seismological Society of America. 387
Altamimi Z., Métivier L., Rebischung P., Rouby H., Collilieux X.; 2017: ITRF2014 plate motion model, Geophys. J. Int., 209, 3, doi:10.1093/gji/ggx136. 390
Beavan J., Haines J.; 2001: Contemporary horizontal velocity and strain rate fields on the Pacific-Australian plate boundary zone through New Zealand. J. Geophys. Res., 106(B1), doi:10.1029/2000JB900302. 390
Devoti R., D’Agostino N., Serpelloni E., Pietrantonio G., Riguzzi F., Avallone A., Cavaliere A., Cheloni D., Cecere G., D’Ambrosio C., Falco L., Selvaggi G., Mètois M., Esposito A., Sepe V., Galvani A., Anzidei M.; 2017: A Combined Velocity Field of the Mediterranean Region. Annals of Geophysics, 60(2), doi:10.4401/ag-7059. 390
Shen-Tu B., Holt W.E., Haines J.; 1998: Contemporary kinematics of the western United States determined from earthquake moment tensors, very long baseline interferometry, and GPS observations. J. Geophys. Res., 103(B8), doi:10.1029/98JB01669. 390
1 Dipartimento di Fisica e Astronomia (DIFA), Alma Mater Studiorum Università di Bologna, Italy 391
2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italy 391
Burov, E. B., Watts, A. B; 2006. The long-term strength of continental lithosphere: "jelly sandwich" or" crème brûlée"?. Geological Society of America Today, 16(1), 4. 394
Cloetingh, S., Burov, E. B; 1996. Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophysical Journal International, 124(3), 695-723. 394
Cloetingh, S., Ziegler, P. A., Beekman, F., Andriessen, P. A. M., Hardebol, N., Dezes, P.; 2005. Intraplate deformation and 3D rheological structure of the Rhine Rift System and adjacent areas of the northern Alpine foreland. International Journal of Earth Sciences, 94, 758-778. 394
Evans, B.; 2005. Creep constitutive laws for rocks with evolving structure. Geol Soc Lond Spec Publ 245 (1): 329–346. 394
Handy, M. R., Brun, J. P.; 2004. Seismicity, structure and strength of the continental lithosphere. Earth and Planetary Science Letters, 223(3-4), 427-441. 394
Hirth, G., Kohlstedf, D.; 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Geophysical monograph-american geophysical union, 138, 83-106. 394
Jackson, J. A; 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. Geological Society of America Today, 12, 4-10. 394
Le Pichon, X., Francheteau, J., Bonnin, J., X.; 2013. Plate tectonics (Vol. 6). Elsevier. 394
Liu, L., Zoback, M. D.; 1997. Lithospheric strength and intraplate seismicity in the New Madrid seismic zone. Tectonics, 16(4), 585-595. 394
Shen, Z. K., Jackson, D. D., Ge, B. X; 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. Journal of Geophysical Research: Solid Earth, 101(B12), 27957-27980. 394
Shen, Z. K., Wang, M., Zeng, Y., Wang, F; 2015. Optimal interpolation of spatially discretized geodetic data. Bulletin of the Seismological Society of America, 105(4), 2117-2127. 395
Tesauro, M., Kaban, M. K., Cloetingh, S. A; 2009. A new thermal and rheological model of the European lithosphere. Tectonophysics, 476(3-4), 478-495. 395
Thatcher, W.; 1983. Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. Journal of Geophysical Research: Solid Earth, 88(B7), 5893-5902. 395
Thatcher, W.; 2009. How the continents deform: The evidence from tectonic geodesy. Annual Review of Earth and Planetary Sciences, 37, 237-262. 395
Tullis, J.; 2002. Deformation of granitic rocks: experimental studies and natural examples. Reviews in Mineralogy and Geochemistry, 51(1), 51-95. 395
Twiss, R. J.; 1977. Theory and applicability of a recrystallized grain size paleopiezometer. Stress in the Earth, 227-244. 395
Wessel P., Smith W. H.; 1998: New, improved version of Generic Mapping Tools released, Eos, Transactions American Geophysical Union, 79(47), 579-579. 395
Zhang, S., Karato, S. I.; 1995. Lattice preferred orientation of olivine in simple shear deformation and the flow geometry of the upper mantle of the Earth. Nature, 375, 774-777. 395
Zang, S. X., Wei, R. Q., Ning, J. Y.; 2007. Effect of brittle fracture on the rheological structure of the lithosphere and its application in the Ordos. Tectonophysics, 429(3-4), 267-285. 395
MCMTpy waveform inversion package: testing a new method for moment tensor estimation 400
T. Mancuso1, C. Totaro1, B. Orecchio1 400
1 Department of Mathematical and Computer Sciences, Physical and Earth Sciences (University of Messina, Italy) 400
A. M. Marotta1, R. Barzaghi2, A. Bollino1, A. Regorda1, R. Sabadini1 402
1 Department of Earth Sciences Ardito Desio, Universit`a degli Studi di Milano, Milano, Italy 402
Brockmann, J.M., Schubert, T., Schuh, W.D., 2021. An improved model of the Earth’s static gravity field solely derived from reprocessed GOCE data. Surv. Geophys. 42, 277–316. https://doi.org/10.1007/s10712-020-09626-0. 403
Marotta, A.M., Barzaghi, R., 2017. A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band. J. Geod. 91, 1207–1224. https://doi.org/10.1007/s00190- 017-1018-x. Surname N.; 20xx: Title. Journal. 403
Physical models for the Solid Earth and integration between modeling and data of different nature 404
1 INGV, Dept.Palermo, Palermo, Italy 404
2 CNR-IGG, Pisa, Italy 404
1. Department of Mathematics, Informatics and Geosciences (MIGe), University of Trieste, Trieste, Italy, 405
Beamish, D., Busby, J. (2016) The Cornubian geothermal province: heat production and flow in SW England: estimates from boreholes and airborne gamma-ray measurements. Geotherm Energy 4, 4. https://doi.org/10.1186/s40517-016-0046-8 406
Maurizio, G., Braitenberg, C., Sampietro, D., & Capponi, M. (2023). A new lithospheric density and magnetic susceptibility model of Iran, starting from high-resolution seismic tomography. Journal of Geophysical Research: Solid Earth, 128, e2023JB027383. https://doi.org/10.1029/2023JB027383 406
Moorkamp, M., Heincke, B., Jegen, M., Roberts, A. W., Hobbs, R. W. (2011). A framework for 3-D joint inversion of MT, gravity and seismic refraction data, Geophysical Journal International, Volume 184, Issue 1, Pages 477–493. https://doi.org/10.1111/j.1365-246X.2010.04856.x 406
Moorkamp, M. (2022). Deciphering the state of the lower crust and upper mantle with multi-physics inversion. Geophysical Research Letters, 49, e2021GL096336. https://doi.org/10.1029/2021GL096336 406
Reinecker, J., Gutmanis, J., Foxford, A., Cotton, L., Dalby, C., Law, R. (2021). Geothermal exploration and reservoir modelling of the United Downs deep geothermal project, Cornwall (UK), Geothermics, Volume 97, 102226, ISSN 0375-6505. https://doi.org/10.1016/j.geothermics.2021.102226. 406
Romer, R. L., Kroner, U. (2016). Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting, Gondwana Research, Volume 31, Pages 60-95, ISSN 1342-937X. https://doi.org/10.1016/j.gr.2015.11.002. 406
Sampietro, D., Capponi, M., & Maurizio, G. (2022). 3D Bayesian inversion of potential fields: The Quebec Oka carbonatite complex case study. Geosciences, 12(10), 382. https://doi.org/10.3390/geosciences12100382 406
Simons, B., Shail, R. K., Andersen, J. C. Ø. (2016). The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England, Lithos, Volume 260, Pages 76-94, ISSN 0024-4937. https://doi.org/10.1016/j.lithos.2016.05.010. 406
Simons, B., Andersen, J. C. Ø., Shail, R. K., Jenner, F. E. (2017). Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation, Lithos, Volumes 278–281, Pages 491-512, ISSN 0024-4937. https://doi.org/10.1016/j.lithos.2017.02.007. 406
Willis-Richards, J., Jackson, N. J. (1989). Evolution of the Cornubian ore field, Southwest England; Part I, Batholith modeling and ore distribution. Economic Geology; 84 (5): 1078–1100. https://doi.org/10.2113/gsecongeo.84.5.1078 406
Monna, S., Montuori, C., Frugoni, F., Piromallo, C., Vinnik, L., & AlpArray Working Group (2022). Moho and LAB across the Western Alps (Europe) from P and S receiver function analysis. Journal of Geophysical Research: Solid Earth, 127, e2022JB025141. https://doi.org/10.1029/2022JB025141 409
Monna, S., Montuori, C., Piromallo, C., & Vinnik, L. (2019). Mantle structure in the central Mediterranean region from P and S receiver functions. Geochemistry, Geophysics, Geosystems, 20(10), 4545-4566. https://doi.org/10.1029/2019GC008496 412
Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1-2), 479-487. https://doi.org/10.1007/ bf01016429 412
Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated Annealing. Physica A: Statistical Mechanics and its Applications, 233(1), 395-406. https://doi.org/10.1016/s0378-4371(96)00271-3 412
T. Ninivaggi1, G. Selvaggi2, S. Mazza2, M. Filippucci2,2,3, F. Tursi4, W. Czuba5 413
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Irpinia, Grottaminarda, Italy 413
2 Istituto Nazionale di Geofisica e Vulcanologia, ONT, Roma, Italy 413
3 Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari 413
“Aldo Moro”, Bari, Italy 413
4 Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy 413
5 Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland 413
Fig. 1 – Observation of the later seismic phase. a) Stations which recorded the x-phase (green triangles). Seismograms of stations in black do not show the later arrival. Section trace AB of the Fig. 3, passing from the 2011 earthquake (n. 37). The red lines delineate the old (30 Ma) and the present subduction signature. The two thin black lines delineate the azimuths -60° and 30° starting from the epicentre. b) Time-distance vertical seismograms of the 2011 event aligned with P arrival time at 20 s. The red line marks the later phase arrivals. 414
References 419
Amato, A., Alessandrini, B., Cimini, G., Frepoli, A., Selvaggi, G.; 1993: Active and remnant subducted slabs beneath Italy: evidence from seismic tomography and seismicity. Ann. Geophys. 36 (2) https://doi.org/10.4401/ag-4272. 419
Cai, N., Qi, X., Chen, T., Wang, S., Yu, T., Wang, Y., et al.; 2021: Enhanced visibility of subduction slabs by the formation of dense hydrous phase A. Geophys. Res. Lett. 48 (19), 1–10. https://doi.org/10.1029/2021GL095487. 419
Červený, V., Pšenčík, I.; 1984: SEIS83-Numerical modelling of seismic wave fields in 2-D laterally varying layered structures by the ray method. In: Engdahl, E.R. (Ed.), Documentation of Earthquake Algorithms, Report SE-35. World Data Center A for Solid Earth Geophysics, Boulder, pp. 36–40. 419
Červený, V., Molotkov, I.A., Pšenčík, I.; 1977: Ray method in seismology. Charles Univ. Press, Praha. 419
Collier, J.D., Helffrich, G.R., Wood, B.J.; 2001: Seismic discontinuities and subduction zones. Phys. Earth Planet. Inter. 127 (1–4), 35–49. https://doi.org/10.1016/S0031-9201(01)00220-5. 419
European Integrated Data Archive; 2023: http://eida.ingv.it/ (accessed 31 October 2021). 419
Furumura, T., Kennett, B.L.N., Padhy, S.; 2016: Enhanced waveguide effect for deep-focus earthquakes in the subducting Pacific slab produced by a metastable olivine wedge. J. Geophys. Res. Solid Earth 121, 6779–6796. https://doi.org/10.1002/2016JB013300. 419
Hacker, B.R., Abers, G.A., Peacock, S.M.; 2003: Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents. J. Geophys. Res. Solid Earth 108 (B1), 1–26. https://doi.org/10.1029/2001jb001127. 419
ISIDe Working Group; 2007: Italian Seismological Instrumental and Parametric Database (ISIDe) [Dataset]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.Org/10.13127/ISIDE. 419
Incorporated Research Institutions for Seismology Data Management Centre; 2023: https://service.iris.edu/ (accessed 31 October 2021). 419
Kennett, B.L.N., Engdahl, E.R.; 1991: Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x 419
Murphy, J.R., Barker, B.W.; 2006: Improved focal-depth determination through automated identification of the seismic depth phases pP and sP. Bull. Seismol. Soc. Am. 96 (4A), 1213–1229. https://doi.org/10.1785/0120050259. 419
Pino, N.A., Helmberger, D.V.; 1997: Upper mantle compressional velocity structure beneath the West Mediterranean Basin. J. Geophys. Res. 102 (B2), 2953–2967. https://doi.org/10.1029/96JB03461. 419
Scarfì, L., Barberi, G., Barreca, G., Cannavò, F., Koulakov, I., Patanè, D.; 2018: Slab narrowing in the Central Mediterranean: the Calabro-Ionian subduction zone as imaged by high resolution seismic tomography. Sci. Rep. 8 (1), 1–12. https://doi.org/10.1038/s41598.018-23543-8. 419
van Keken, P.E., Hacker, B.R., Syracuse, E.M., Abers, G.A.; 2011: Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401. https://doi.org/10.1029/2010JB007922. 420
Zhao, C.A.; 2019: Importance of later phases in seismic tomography. Phys. Earth Planet. Inter. 296, 106314 https://doi.org/10.1016/j.pepi.2019.106314. 420
Zhao, D., Matsuzawa, T., Hasegawa, A.; 1997: Morphology of the subducting slab boundary in the northeastern Japan arc. Phys. Earth Planet. Inter. 102 (1–2), 89–104. https://doi.org/10.1016/S0031-9201(96)03258-X. 420
1 Università degli studi di Trieste 421
2 Istituto di Oceanografia e di Geofisica Sperimentale, OGS, Trieste 421
3 EvK2cnr, Bergamo 421
Gibbons, S.J., Ringdal, F.; 2006: The detection of low magnitude seismic events using array-based waveform correlation. Geophys. J. Int. 165 (1), 149–166. 421
Pettenati F., C. Cravos, T. Dawa Sherpa, L. Adhikari Sherpa, M. P. Plasencia Linares, M. Romanelli, G. Verza; 2014: The installation of a new broadband seismometer to the EVK2-CNR Pyramid International Laboratory-Observatory (Everest, Nepal). 33° Convegno Nazionale Gruppo Nazionale di Geofisica della Terra Solida GNGTS. Bologna, 25-27 Novembre. 2014. Abstract. 421
Vuan A., Sugan M., Amati G., Kato A.; 2018: Improving the Detection of Low‐Magnitude Seismicity Preceding the Mw 6.3 L’Aquila Earthquake: Development of a Scalable Code Based on the Cross Correlation of Template Earthquakes. Bull Seismol Soc Am 2018; 108 (1), 471–480. doi: https://doi.org/10.1785/0120170106 421
1 Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, "Aldo Moro", Bari, Italy 422
2 Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy 422
Kelbert, A. (2020). The role of global/regional Earth conductivity models in natural geomagnetic hazard mitigation. Surveys in Geophysics,41, 115–166.https://doi.org/10.1007/s10712-019-09579-z 423
1.Department of Mathematics, Computer Sciences, Physics, and Earth Sciences, University of Messina, Italy 424
2.Institut Cartogràfic i Geològic de Catalunya, Barcelona, Spain; 424
3.Instituto Andaluz de Geofísica, Universidad de Granada, Spain 424
Orecchio B., Scolaro S., Batlló J., Neri G., Presti D., Stich D., and Totaro C., (2021). New Results for the 1968 Belice, South Italy, Seismic Sequence: Solving the Long‐Lasting Ambiguity on Causative Source, Seismol. Res. Lett., 92(4), 2364-2381. Doi:10.1785/0220200277 425
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P., and Antonucci A. (2022). Italian Parametric Earthquake Catalogue (CPTI15), version 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). doi:10.13127/CPTI/CPTI15.4 425
Stich D., Batlló J., Macià R., Teves-Costa P., and Morales J. (2005). Moment tensor inversion with single-component historical seismograms: The 1909 Benavente (Portugal) and Lambesc (France) earthquakes, Geophys. J. Int., 162(3), 850–858. Doi: 10.1111/j.1365-246X.2005.02680.x 425
References 429
Davies J. H.; 2003: Elastic field in a semi-infinite solid due to thermal expansion or a coherently misfitting inclusion. J. Appl. Mech. 70 (5), 655–660. 429
Federico C., Cocina O., Gambino S., Paonita A., Branca S., Coltelli M., Italiano F., Bruno V., Caltabiano T., Camarda M., Capasso G., De Gregorio S., Diliberto I. S., Di Martino R. M. R., Falsaperla S., Greco F., Pecoraino G., Salerno G., Sciotto M., Bellomo S., Di Grazia G., Ferrari F., Gattuso A., La Pica L., Mattia M., Pisciotta A. F., Pruiti L., Sortino F.; 2023: Inferences on the 2021 ongoing volcanic unrest at vulcano island (Italy) through a comprehensive multidisciplinary surveillance network. Remote Sens. 15, 1405. 429
Hemmings B., Gottsmann J., Whitaker F., Coco A.; 2016: Investigating hydrological contributions to volcano monitoring signals: A time-lapse gravity example. Geophys. J. Int. 207 (1), 259–273. 429
Rinaldi A. P., Todesco M., Vandemeulebrouck J., Revil A., Bonafede M.; 2011: Electrical conductivity, ground displacement, gravity changes, and gas flow at solfatara crater (Campi Flegrei caldera, Italy): results from numerical modeling. J. Volcanol. Geother. Res. 207 (3-4), 93–105. 429
Stissi S. C., Napoli R., Currenti G., Afanasyev A., Montegrossi G.; 2021: Influence of permeability on the hydrothermal system at Vulcano Island (Italy): inferences from numerical simulations. Earth, Planets Space 73, 179. 429
Stissi S. C., Currenti G., Cannavò F., Napoli, R.; 2023: Evidence of poro-elastic inflation at the onset of the 2021 Vulcano Island (Italy) unrest. Front Earth Sci 11:1179095. 429
Wang H. F.; 2000: Theory of linear poroelasticity with Applications to Geomechanics and hydrogeology. Princeton University Press. 429
1Department of Psychological Sciences, Health and Territory, University of the Studies “G. d'Annunzio”, Chieti, Italy 430
2CRUST-Interuniversity Center for 3D Seismotectonics with Territorial Applications, Chieti, Italy 430
3Dipartimento di Fisica e Astronomia (DIFA), Alma Mater Studiorum-Università di Bologna, Bologna, Italy 430
Bagh, S., Chiaraluce, L., De Gori, P., Moretti, M., Govoni, A., Chiarabba, C., Di Bartolomeo, P., Romanelli, M., 2007. Background seismicity in the Central Apennines of Italy: The Abruzzo region case study. Tectonophysics 444, 80–92. https://doi.org/10.1016/j.tecto.2007.08.009 432
De Siena, L., Thomas, C., Aster, R., 2014. Multi-scale reasonable attenuation tomography analysis (MuRAT): An imaging algorithm designed for volcanic regions. Journal of Volcanology and Geothermal Research 277, 22–35. https://doi.org/10.1016/j.jvolgeores.2014.03.009 432
De Siena, L., Thomas, C., Waite, G.P., Moran, S.C., Klemme, S., 2014. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens. J. Geophys. Res. Solid Earth 119, 8223–8238. https://doi.org/10.1002/2014JB011372 432
Di Martino, M.D.P., De Siena, L., Tisato, N., 2022. Pore Space Topology Controls Ultrasonic Waveforms in Dry Volcanic Rocks. Geophysical Research Letters 49. https://doi.org/10.1029/2022GL100310 432
Di Stefano, R., Ciaccio, M.G., 2014. The lithosphere and asthenosphere system in Italy as inferred from the Vp and Vs 3D velocity model and Moho map. Journal of Geodynamics 82, 16–25. https://doi.org/10.1016/j.jog.2014.09.006 432
Frepoli, A., Cimini, G.B., De Gori, P., De Luca, G., Marchetti, A., Monna, S., Montuori, C., Pagliuca, N.M., 2017. Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity. Tectonophysics 712–713, 312–329. https://doi.org/10.1016/j.tecto.2017.05.026 432
Gualtieri, L., Serretti, P., Morelli, A., 2014. Finite-difference P wave travel time seismic tomography of the crust and uppermost mantle in the Italian region: P WAVE TOMOGRAPHY OF THE ITALIAN REGION. Geochem. Geophys. Geosyst. 15, 69–88. https://doi.org/10.1002/2013GC004988 432
King, T., De Siena, L., Benson, P., Vinciguerra, S., 2022. Mapping faults in the laboratory with seismic scattering 1: the laboratory perspective. Geophysical Journal International 232, 1590–1599. https://doi.org/10.1093/gji/ggac409 432
King, T., De Siena, L., Zhang, Y., Nakata, N., Benson, P., Vinciguerra, S., 2023. Mapping faults in the laboratory with seismic scattering 2: the modelling perspective. Geophysical Journal International 234, 1024–1031. https://doi.org/10.1093/gji/ggad100 432
Reiss, M.C., De Siena, L., Muirhead, J.D., 2022. The Interconnected Magmatic Plumbing System of the Natron Rift. Geophysical Research Letters 49. https://doi.org/10.1029/2022GL098922 432
Romano, M.A., de Nardis, R., Garbin, M., Peruzza, L., Priolo, E., Lavecchia, G., Romanelli, M., 2013. Temporary seismic monitoring of the Sulmona area (Abruzzo, Italy): a quality study of microearthquake locations. Nat. Hazards Earth Syst. Sci. 13, 2727–2744. https://doi.org/10.5194/nhess-13-2727-2013 432
Scafidi, D., Solarino, S., Eva, C., 2009. P wave seismic velocity and Vp/Vs ratio beneath the Italian peninsula from local earthquake tomography. Tectonophysics 465, 1–23. https://doi.org/10.1016/j.tecto.2008.07.013 432
Sketsiou, P., De Siena, L., Gabrielli, S., Napolitano, F., 2021. 3-D attenuation image of fluid storage and tectonic interactions across the Pollino fault network. Geophysical Journal International 226, 536–547. https://doi.org/10.1093/gji/ggab109 432
Tisato, N., Quintal, B., 2014. Laboratory measurements of seismic attenuation in sandstone: Strain versus fluid saturation effects. GEOPHYSICS 79, WB9–WB14. https://doi.org/10.1190/geo2013-0419.1 433
Trionfera, B., Frepoli, A., De Luca, G., De Gori, P., Doglioni, C., 2019. The 2013–2018 Matese and Beneventano Seismic Sequences (Central–Southern Apennines): New Constraints on the Hypocentral Depth Determination. Geosciences 10, 17. https://doi.org/10.3390/geosciences10010017 433
Zhao, L., Paul, A., Malusà, M.G., Xu, X., Zheng, T., Solarino, S., Guillot, S., Schwartz, S., Dumont, T., Salimbeni, S., Aubert, C., Pondrelli, S., Wang, Q., Zhu, R., 2016. Continuity of the Alpine slab unraveled by high-resolution P wave tomography: Continuity of the Alpine Slab. J. Geophys. Res. Solid Earth 121, 8720–8737. https://doi.org/10.1002/2016JB013310 433
1National Institute of Oceanography and Applied Geophysics - OGS - Italy 434
Herring, T.A. and King, R., Floyd, M.A. and McClusky, S. C.; 2018: GAMIT Reference Manual: GPS Analysis at MIT, Release 10.7. Department of Earth. Tech. rep., Massachusetts Institute of Technology, Cambridge, Mass. URL: <http://geoweb.mit.edu/gg/Intro_GG.pdf> 435
Tunini, L., Magrin, A., Rossi, G., and Zuliani, D.; 2023: GNSS time series and velocities about a slow convergent margin processed on HPC clusters: products and robustness evaluation, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2023-131, in review. 435
Zuliani, D., Fabris, P., Rossi, G.; 2019: FReDNet: Evolution of permanent GNSS receiver system. In: New Advanced GNSS and 3D Spatial Techniques Applications to Civil and Environmental Engineering, Geophysics, Architecture, Archeology and Cultural Heritage, Lecture Notes in Geoinformation and Cartography; Cefalo, R., Zielinski, J., Barbarella, M., Eds.; Springer: Cham, Switzerland, pp.123–137. 435
1Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italia 436
22_Abstract_GNGTS2024.pdf 522
DISASTER RISK ANALYSIS AND REDUCTION 522
M. Ariano1, P.L. Fantozzi1, D. Albarello1 524
1Department of Physics Sciences, Earth and Environment, University of Siena, Siena, Italy 524
D. Attolico1,2, G. Cultrera1, V. De Rubeis1, N. Theodoulidis1 534
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) 534
2 Asset - Agenzia regionale Strategica per lo Sviluppo Ecosostenibile del Territorio (Regione Puglia, Italy) 534
S. Azhideh, S. Barani, G. Ferretti, D. Scafidi, G. Pepe 535
1 Università degli Studi di Genova, Genova, Italy 535
Fig. 1 Example distribution of M and R with indication of the mean and modal scenarios. 536
Fig. 2 Comparison of the mean and modal M-R scenarios shown in Figure 1 with the upper-bound curve for disrupted slides and falls proposed by Keefer (1984). The preferred M-R pair is displayed in red. 537
Fig. 3 Map of preferred magnitude (a) and distance (b) associated with the PGA hazard for a 475-yr return period and corresponding earthquake-induced landslide triggering map (c). In the latter, red points are nodes for which the triggering of earthquake-induced landslides can not be excluded. 538
1 National Institute of Oceanography and Applied Geophysics –OGS, Italy 540
2 National Institute of Geophysics and Volcanology –INGV, Italy 540
3 University of Ferrara - Italy 540
Fig. 1: The study area in the Po plain, near the city of Ferrara: on the left, noise measurements and seismic station position; on the right, Vs profiles available. 541
P.L. Bragato1, J. Boaga2, G. Capotosti1, P. Comelli1, S. Parolai1,3, G. Rossi1, H. Siracusa1, P. Ziani1, D. Zuliani1 543
1 National Institute of Oceanography and Applied Geophysics – OGS, Italy 543
2 University of Padova, Italy 543
3 University of Trieste, Italy 543
Fig. 1 – Stations composing the dense accelerometric network in Veneto: green, organizations of volunteers and other public edifices; red, telephone exchange buildings of TIM s.p.a.; yellow, post offices of Poste Italiane s.p.a. 544
G. Caielli1, R. de Franco1, I. Gaudiosi2, A. Mendicelli2, M. Moscatelli2, G. Norini1, D. Rusconi1, M. Simionato2. 545
1 ISTITUTO DI GEOLOGIA AMBIENTALE E GEOINGEGNERIA – CNR - Milano - Italy 545
2 ISTITUTO DI GEOLOGIA AMBIENTALE E GEOINGEGNERIA – CNR - Montelibretti - Italy 545
This work was carried out as part of the projects: 547
N. Carfagna1, P. Pieruccini2, P. Fantozzi1, D. Albarello2,3 548
1 Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy 548
N. Cella, C. Bedon 550
University of Trieste, Department of Engineering and Architecture, Trieste, Italy 550
C. Comina 1, G.M. Adinolfi1, A. Bertea2, C. Bertok1, V. Giraud2, P. Pieruccini1 559
1 Università degli studi di Torino, Department of Earth Sciences; Torino, Italy. 559
2 Seismic Sector, Piedmont Region; Pinerolo, Italy. 559
Figure 1 – Map of the Geological Domains within the Piedmont Region, black dots represent the available geophysical information in terms of shear wave velocity profiles from Regional repository database, on purpose implemented information and specific field tests executed. 560
Figure 3 – Average Vs,z profiles for the non-bedrock units for each GD. 562
G. Cultrera1 , A. Mercuri1 564
(1) Istituto Nazionale di Geofisica e Vulcanologia, Roma - Italy 564
Fig. 1 – Data distribution for lithological classification grouped by rock categories with similar genesis(left) and Site classification from NTC18 (right). 565
Fig. 3 – Distribution of f0 from HVnoise, with respect to the magnitude residuals. 566
A. D’Agostino1, A. Porchia2, G. Cavuoto3, F. Pavano3, M. Moscatelli2, G. Tortorici2, S. Catalano1,2 567
1 Department of Biological, Geological and Environmental Sciences (DBGES) – Section of Earth Science, University of Catania. 567
2 IGAG-CNR - Institute of Environmental Geology and Geoengineering of the Italian National Research Council, Area Della Ricerca di Roma 1. 567
3 ISPC-CNR - Institute of Heritage Science of the Italian National Research Council, Napoli. 567
M. Fasan1, C. Bedon1, F. Romanelli2 572
1 University of Trieste, Department of Engineering and Architecture 572
2 University of Trieste, Department of Mathematics and Geosciences 572
Fig. 1 – Example of different realizations of the rupture process 574
Fig. 2 – Cloud data (indicated with NC) and regressions obtained for the four studied configurations (PGA) 576
Fig. 3 - Fragility curves obtained for the four studied configurations (PGA) 577
S. F. Fornasari , V. Pazzi , G. Costa 579
Dipartimento di Matematica, Informatica e Geoscienze (MIGE - Università degli Studi di Trieste, Italia) 579
I. Gaudiosi1, G. Acunzo2, D. Albarello3, M. Moscatelli1 594
1 Istituto di Geologia Ambientale e Geoingegneria (CNR, Italy) 594
2 Theta Group (Italy) 594
3 Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente (Università degli Studi di Siena, Italy) 594
S. Hailemikael1, G. Cultrera1, C. Barnaba2, G. Laurenzano2, G. Martini1,3, A. Peloso3, F. Cara1, G. Di Giulio1, D. Famiani1 596
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy. 596
2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy. 596
3 Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Frascati, Italy. 596
Fig. 1 - Distribution of residuals between median FA_exp and Fa_syn values (in natural logarithmic units) as a function of period: short (FA1 blue), intermediate (red) and long periods (green). 597
G. Laurenzano1, N. Tragni2, P. Klin1, TA Stabile2, MR Gallipoli2 & PRIN SERENA WP06 WG 599
A. Mazelli1,2, C. Bedon2, A. Morassi1 603
1 University of Udine, Polytechnic Department of Engineering and Architecture, Udine, Italy 603
2 University of Trieste, Department of Engineering and Architecture, Trieste, Italy 603
A. Mendicelli1, F. Mori1, C. Varone1, M. Simionato1, M. Moscatelli1 611
At present, the most detailed geological map covering the entire Italian national territory is the 1:100,000 scale geological map of Italy created by ISPRA. To estimate the stratigraphic amplification of seismic motion at the surface over a large area, it is crucial to better define the geological and lithotechnical characteristics of covering soils and geological bedrocks. This work is aimed at improving the definition of recent alluvial covers (Holocene and Upper Pleistocene deposits) compared to the 1:100,000 geological map of Italy. For this purpose, a methodology based on machine learning models has been developed. It considers both categorical and numerical variables to predict the presence/absence of recent flood coverage with good accuracy. 611
To train the machine learning model, both geomorphometric parameters and geological databases at different scales were used. Initially, the methodology was tested in the Calabria Region and in the Marche Region, for which promising results were obtained with good performances in the external test. The next step, still in the development phase, consists in the application of the methodology in a wider area which includes not only the Calabria and Marche regions but also Tuscany, Emilia-Romagna and Umbria. The model thus obtained will be tested across the entire national territory. 611
This research was supported with funds from the PNRR, from the project: “National Center for HPC, Big Data and Quantum Computing – HPC – SPOKE 5” – CN00000013. 611
L. Minarelli1, M. Stefani2, S. Amoroso3-1, G. Tarabusi1 612
1Istituto Nazionale di Geofisica e Vulcanologia, Italy 612
2University of Ferrara, Italy 612
3 University of Chieti-Pescara, Italy 612
1 Istituto Nazionale di Geofisica e Vulcanologia – INGV, Milan, Italy 621
2 CNR Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”, Milan, Italy 621
3 Istituto Nazionale di Geofisica e Vulcanologia – INGV, Catania, Italy 621
1 Istituto Nazionale di Geofisica e Vulcanologia (Italia) 627
Fig. 1. Schematic representation of the current structure and activities of the SISMIKO Operational Group. 628
1 University of Molise, Dept. of Biosciences and Territory, Campobasso, Italy 629
2 Institute for Construction Technologies ITC-CNR, National Research Council, L’Aquila, Italy 629
3 S2X S.r.l., Campobasso, Italy 629
4 University of Molise, Dept. of Medicine and Health Sciences, Campobasso, Italy 629
Fig. 1 – Multi-level framework for safety management of health facilities structures 630
Fig. 2 – HF-INSPECT software 631
Fig. 3 – HF-ALL RISKS software (the figure illustrates the TFM for the hospital of Campobasso) 633
GIS spatial modelling for seismic exposure assessment: a case study over Central Asia. 639
A. Tamaro, C. Scaini 639
National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy 639
G. Tarchini1, D. Spallarossa1, D. Scafidi1, S. Parolai2, M. Picozzi3, D. Bindi4 648
1 DISTAV, University of Genoa, Genoa, Italy 648
2 Department of Mathematics, Informatics and Geosciences, University of Trieste, Trieste, Italy 648
3 National Institute of Oceanography and Applied Geophysics – OGS, Udine, Italy 648
4 Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany 648
Fig. 1 – STATION main webpage. 649
Fig. 2 – Example of specific webpage for the station IV.AQU. 650
Machine Learning-based modelling for Near Real-Time prediction of liquefaction 653
C. Varone1, F. Mori1, A. Mendicelli1, G. Ciotoli1, G. Acunzo2, G. Naso3, M. Moscatelli1 653
1 CNR Italian National Research Council, Institute of Environmental Geology and Geoengineering (IGAG), Montelibretti, Italy 653
2 Theta Group Srls, Rome, Italy 653
23_Abstract_GNGTS2024.pdf 655
GNGTS 2024 655
DISASTER RISK ANALYSIS AND REDUCTION 655
Towards the IT-ALERT implementation. Early warning and cell-broadcast systems in the context of risk and crisis communication 656
Tsunami Ready: some steps for a people-centred tsunami risk approach 661
“A Scuola di Terremoto”: a targeted risk education project in Calabria (South Italy) to promote behavioural change 666
Insights into risk communication from the analysis of earthquake light phenomena reports in Turkey and Morocco 672
E se… (What if…) a game to learn about risk perception 677
Fig. 1 – Poster of the Activity at Futuro Remoto 2023 678
Preparing for disasters through games: a worth taking bet? 680
From risk to safety for a resilient governance 682
Tsunami risk perception of the touristic population of Stromboli Island: towards effective risk communication strategies 689
Abstract 689
Methodology 689
Results 689
References 690
Risk education and communication: the experience of serious games and Situated Learning Episodes (ELS) in Pandemic 692
Real-time seismicity on your smartphone 695
M. Pignone1, E. Casarotti2, V. Lauciani1, C. Nostro1, C. Meletti3, A. Amato1 695
1 Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Roma, Italy 695
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italy 695
3 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy 695
References 699
Trust in authorities and experts as shaping factor of risk perception 700
R. Russo1, M. V. Gargiulo1, R. Iorio2, G. Cavalca2, P. Capuano1 700
1 Università degli Studi di Salerno, Department of Physics “E.R. Caianiello”, Fisciano (SA), Italy 700
In September 2019, the United Nations Secretary-General, António Guterres, remarked that our global community is experiencing a significant challenge known as 'Trust Deficit Disorder'. He noted a decline in people's trust in political institutions, a growing polarization, and the increasing prevalence of populism. 700
Seismic risk communication in Europe over the last two decades 702
G. Musacchio1, A. Saraò2, S. Falsaperla3, A. Scolobig4 702
1Sezione di Milano, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy 702
2Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Italy 702
3Sezione di Catania, Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy 702
4Institute for Environmental Sciences, University of Geneva, Switzerland; Equity and Justice Group, International Institute for Applied Systems Analysis, Austria 702
Fig. 1 – a) Publications on seismic risk communication over time. Raw data from Google Scholar database searches according to the strings listed in the text are plotted for all risks (right y-axis) and seismic risk communication (left y-axis) in Europe and worldwide; b) publications shortlisted for this review study. 703
Schools-tailored activities to communicate seismic risk 708
Seismic risk perception in italian hospitals: The role of non-structural elements 717
31_Abstract_GNGTS2024.pdf 722
GNGTS 2024 722
APPLIED GEOPHYSICS FOR ENERGY, ENVIRONMENT AND NEW TECHNOLOGIES 722
O. Amoroso1, V. Giampaolo2, M. Balasco2, M. Blasone1, D. Bubbico3, P. Capuano1, G. De Martino2, M.V. Gargiulo1, F. Napolitano1, A. Perrone2, S. Panebianco2, R. Russo1, V. Serlenga2, T.A. Stabile2 723
C. Bellezza, E. Barison, F. Poletto, A. Schleifer, F. Meneghini, G. Böhm, B. Farina 726
Acknowledgements 727
Salt domes modelling through magnetic data: an unconventional tool for challenging scenarios 728
L. Bianco1, M. Abbas1, L. Speranza2, B. Garcea2, M. Fedi1 728
1 Department of Earth, Environmental and Resources, University of Naples “Federico II”, Naples, Italy. 728
2 Energean, Milan, Italy. 728
T. Braun1, S. Danesi2 729
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Arezzo, Italy 729
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy 729
Fig. 1 – Monitoring domains DE, DI and DR defined for the monitoring of the hydrocarbon exploitation in VA (after Danesi et al., 2021) 731
Fig. 2 – Example screenshot of the seismic activity in VA recorded in 2023 by INGV. 731
Comparison and calibration of Traffic Light Protocols applied in different countries, in the framework of the ENSURE-project 733
T. Braun1, S. Danesi 2 733
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Arezzo, Italy 733
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Italy 733
Fig. 1 – Operation principle of a Traffic Light Protocol 734
The MARE (MARine Energy) project Assessment of energy production potential from marine waves and currents: a case study from Aegadian archipelago 736
A. D'Alessandro1, A. Sulli2, M. Agate2, P. Capizzi2, C. Caruso1, L. Cocchi2, R. D'Anna2, A. Di Benedetto2, A. Figlioli1, M. Gasparo Morticelli2, A. Mandiello1, R. Martorana2, A. Pisciotta1, S. Speciale1, S. Sciré Scappuzzo1, S. Scudero1, G. Vitale1 736
1 Istituto Nazionale di Geofisisica e Vulcanologia, Italy 736
2 Università degli Studi di Palermo, Italy 736
Airborne and Ground IP: an integrated approach for exploration 743
F. Dauti1, A. Viezzoli2, G. Fiandaca1 743
1 The EEM Team for Hydro & eXploration, Dep. of Earth Sciences A. Desio, Università degli Studi di Milano, Via Botticelli 23, Milano (Italy) 743
2 Emergo s.r.l., Via XX Settembre 12, Cascina (Pisa), Italy 743
UAS photogrammetry analysis for coastal hazard assessment: the case study of Maronti landslide (Ischia, 2022) 750
1 Istituto Nazionale di Geofisica e Vulcanologia- Sezione Irpinia, Italy 750
2 Istituto Nazionale di Geofisica e Vulcanologia- Osservatorio Vesuviano, Italy 750
Fig. 1 – Pre and post 3D models, DSMs and section of the investigated area. 751
Time-lapse Gravity Monitoring at surface and Excess Mass Estimation of CO2 Stored in Deep Saline Aquifers 756
M. Milano1, M. Fedi1 756
1 Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, Napoli, Italy. 756
This study regards the assessment of surface gravity surveying for CO2 plume monitoring in a deep saline aquifer (Milano and Fedi, 2023). We simulated surface gravity monitoring of CO2 storage for the injection and post-injection phases and using different injection rates. We show that time lapse gravity data can be used to successfully estimate the CO2 stored mass by means of DEXP multiscale analysis, even when the anomaly is incompletely defined, due to a not proper areal coverage of the survey. The DEXP method has proven to be very stable with respect to noise and to be an efficient technique for simultaneously determining the CO2 plume depth, its geometrical features and stored mass. 756
SpiderTherm: Optimizing Geothermal Extraction for Sustainable Energy Transition 758
Molossi1, G. Gola2, A. Manzella2, M. Pipan1 758
S. Panebianco1,2, C. Satriano3, G. Vivone2, M. Picozzi4, A. Strollo5, T.A. Stabile2 763
1 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Italy 763
2 Consiglio Nazionale delle Ricerche (CNR-IMAA), Italy 763
3 Université Paris Cité, Institut de physique du globe de Paris, France. 763
4 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Italy. 763
5 GFZ German Research Centre for Geoscience, Potsdam, Germany. 763
Sabatini A.1, C. Pauselli1, S. Fuchs2, M. Ercoli1, P. Mancinelli1 764
1 Università degli Studi di Perugia, Dip. Fisica e Geologia, Italy. 764
2 GFZ German Research Centre for Geosciences, Germany. 764
Fig. 1 – Simplified scheme of the adopted approach 773
Seismic attribute analyses for geothermal applications: a case study from the geothermal potential assessment in the Valle Latina area (Central Italy). 775
G. Vico1,2, R. Maffucci2, S. Bigi1 775
1 Dipartimento di Scienze della Terra, Università di Roma La Sapienza, Italy 775
2Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy 775
Fig. 1 - An example of vectorization results from the VIDEPI dataset, using the process described in this study. a) Scanned image of line FR-309-80. b) SEG-Y file extracted from the scanned image in a), plotted with similar parameters to the original, c) same SEG-Y data as in b) plotted with a variable density display. d) application of seismic attribute “semblance”; e) application of seismic attribute “pseudo-relief”. 776
This approach of seismic attribute analysis is extremely useful for geothermal exploration of similar fields and reservoirs with a strong AI contrast and the construction of more predictive static and dynamic reservoir models based on discontinuity detected by attribute analysis and seismic interpretation. Seismic attributes are very useful in characterizing faults and fractures also in 2D seismic data volumes. The pseudo-relief attribute application made the interpretation of the main unconformities and structural features possible. 777
Electromagnetic Induction Data Inversion: Realistic Prior Models and Spatial Regularization with Respect to Known Structures 779
N. Zaru1, M. Rossi2, G. Vacca1, G. Vignoli1,3 779
1 DICAAR - University of Cagliari, Italy 779
2 Engineering Geology Division – Lund University, Sweden 779
3 Near Surface Land and Marine Geology Department - GEUS, Denmark 779
Probabilistic Petrophysical Inversion of Ground-Based FDEM Data for Alpine Peatland Characterization: A Case Study in the Italian Dolomites 784
N. Zaru1, S. Silvestri2, M. Assiri3, P. Bai4, T.M. Hansen5, G. Vignoli1,6 784
1 DICAAR - University of Cagliari, Italy 784
2 University of Bologna, Italy 784
3 University of Padua, Italy 784
4 SINOPEC, China 784
5 Aarhus University, Denmark 784
6 Near Surface Land and Marine Geology Department, GEUS, Denmark 784
Fig. 1 – Horizontal slices presenting the inversion outcomes derived from the Frequency-Domain Electromagnetic Induction (FDEM) data collected across the Danta peatland in Italy. Each row shows the resistivity model with maximum likelihood and the probability of encountering peat or clay. Rows (a-b) depict these models and probabilities at depths of 3.0 m and 7.0 m respectively. In the third column, above the peat probability, the figure displays the profile's location shown in Figure 2 (highlighted in bright green), along with the positions of associated boreholes marked by red X. 786
Fig. 2 – Vertical profile presenting the chi-squared value of the deterministic (blue) and maximum likelihood (red) models in the top panel. The deterministic model obtained with the standard Occam’s inversion is shown in the middle panel; the maximum likelihood model obtained with the probabilistic inversion in the bottom panel. The horizontal blue and red lines in the fist panel represent the average chi-squared values associated with the two models. 787
Fig. 3 – Vertical profile presenting the inversion outcomes derived from the Frequency-Domain Electromagnetic Induction (FDEM) data collected across the Danta peatland in Italy. 788
Reference 789
32_Abstract_GNGTS2024.pdf 791
GNGTS 2024 791
APPLIED GEOPHYSICS FOR ENERGY, ENVIRONMENT AND NEW TECHNOLOGIES 791
F. Accomando1 and G. Florio1 792
1 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse – Università di Napoli “Federico II”, Italia. 792
In recent years, there was a notable technological advancement in geophysical sensors. In the case of magnetometry, several sensors were used having the common feature to be miniaturized and lightweight, thus idoneous to be carried by UAV in drone-borne magnetometric surveys. Moreover, such sensors have the common feature to be very cheap, so that it is in principle very easy to have the resources to combine two or three of them to form gradiometers. Nonetheless, another common feature is that their sensitivity ranges from 0.1 to about 200 nT, thus not comparable to that of alkali vapor, standard flux-gate or even proton magnetometers. However, their low-cost, small volume and weight remain as very interesting features of these sensors. In this communication, we want to explore the range of applications of small tri-axial magnetometers commonly used for attitude determination in several devices. We compare the results of ground-based surveys performed with conventional geophysical instruments with those obtained using these sensors. 792
G.M. Adinolfi 1 , C. Comina 1, S.C. Vinciguerra 1 793
1 Department of Earth Sciences, University of Turin, Turin, Italy 793
Combined 3D surface wave and refraction analysis around the Scrovegni Chapel in Padua, Italy 795
I. Barone1, M. Pavoni1, J. T. F. Ting1, J. Boaga1,3, G. Cassiani1,3, D. Dupuy4, R. Deiana2,3 795
1 Università degli Studi di Padova, Dipartimento di Geoscienze, Padova 795
Fig. 1 – Acquisition scheme for the dense 3D seismic survey. 1C and 3D seismic nodes are represented as blue and yellow triangles, respectively, while active source locations are represented as red stars. 796
P-and S-velocity 3D model for the characterisation of the subsurface beneath the village of Arquata del Tronto 798
G. Böhm1, A. Affatato1, L. Baradello1, G. Brancatelli1, E. Forlin1, F. Meneghini1 798
1 National Institute of Oceanography and Applied Geophysics – OGS (Italy) 798
Fig. 2 – Complete 3D Vp model from the travel time tomography of the three lines. a) 3D view. b) Vertical sections extracted along the east-west direction and spaced 25 m apart (see map top right). c) Vertical sections extracted along the north-south direction and spaced 25 m apart (see map top right). 800
Fig. 3 – Horizontal slices corresponding to different depths of the final 3D tomographic P velocity model. The Z coordinate denotes the depth in relation to the corresponding topographic elevation. 801
4. Results and conclusions 801
Monitoring of the saline wedge in the Po di Goro river. 803
P. Boldrin1, E. Ferrari1, F. Droghetti1, A. Bondesan2, E. Rizzo1 803
1 University of Ferrara (Dipartimento di Fisica e Scienze della Terra, Ferrara, Italy ) 803
2 Consorzio di Bonifica di Ferrara (Italy ) 803
Fig.1: The map shows the pathway of the acquisitions. The acquisitions carried out in two different times of the day along part of Po di Goro (15 Km). During the morning (8.00 AM) when there was low tide and during the afternoon (13.00 PM) when there was a peak of maximum tide. The two paths have an overlap of about 1.5 Km. The different EMs were performed using different frequency of Profiler. It was located on a inflatable boat pulled by a kayak. 804
Deep Electric Resistivity Tomography (DERT) on the Cazzaso Landslide 805
1 OGS – Istituto Nazionale di Oceanografia e di geofisica Sperimentale, Trieste, Italia. 805
2DISAT – Dipartimento di Scienze dell’Ambiente e della terra, Università degli Studi Milano – Bicocca, Milano, Italia. 805
3SCVSA - Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italia. 805
4Servizio Geologico, Regione Autonoma Friuli Venezia Giulia, Trieste, Italia. 805
Fig 1 Layout of the MS and FW profiles in the area of the Cazzaso landslide. 807
Fig 2 Resistivity model of the ERT3 line, in the transverse direction respect to the landslide. 809
Fig 3 Resistivity volume (20 - 120 Ωm) extracted from the FullWaver cube showing the whole conductive pelitic complex and the contact between this and the dolomite. 810
What does the seismic record of a World War II bomb-explosion look like? observations from a controlled detonation in 26 november 2023 near Ferrara, Italy 812
1Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Italy 812
2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy 812
Figure 1: SNet4Fer 2.0/3.0 seismic networks (green triangles). The red star represents the point where the WWII bomb was detonated; the circles represent the internal (red) and external (orange) monitoring domains of the Casaglia geothermal field. 813
Figure 2. Examples of the bomb explosion seismograms recorded in stations from the SNet4Fer network. The first two panels show the 3-component records in the SNet4Fer 3.0 stations FEM0 and FEM1 (the seismograms are from the borehole sensors). The third and fourth panels show the records of two NetFer2.0 stations: PONT (3 components) and FORN stations (1 component). 814
L. Capozzoli1, G. De Martino1, S. Imperatore2, F. Nerilli2, L. Telesca1, E. Vasanelli3 822
Fig. 1 - The innovative multi-scale and multi-sensor based approach of ICARUS 824
A Dynamic and Multi-Source Hydrogeophysical Model to Remediate a Complex Hydrocarbon-Contaminated Site 826
P.Ciampi1, G.Cassiani2, G.P.Deidda3, C.Esposito1, G.Scarascia Mugnozza1, M. Petrangeli Papini4 826
1 Department of Earth Science, Sapienza University of Rome 826
2 Department of Geosciences, University of Padua 826
3 Department of Civil, Environmental Engineering and Architecture, University of Cagliari 826
4 Department of Chemistry, Sapienza University of Rome 826
G. Cianchini1, C. Fidani1,2, A. Piscini1, M. Soldani1, A. De Santis1, L. Perrone1 , M. Orlando1, D. Sabbagh1 828
1 Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy 828
2 Central Italy Electromagnetic Network, Fermo, Italy 828
Fig. 1 – Spectrograms recorded on December 22, 2022, from 19:52 to 22:19 LT; the time is marked every 5 minutes by the vertical dotted lines. Frequency was reported in the logarithm scale on the y-axis and power of signals in dB by a colour legend. Two bands are related to the electrode E-W on the top, and to the microphone recording below. Labels on the left and in the middle referred to the power spectra intensities and times of the spectrograms. 829
Fig. 2 – The acoustic spectrogram recorded on April 18 and the morning of 19, 2023, includes the moment of a small seismic event that occurred at Mirabella, M=2.1, about 20 km from Mefite. The Mirabella earthquake time is indicated by a vertical cyan arrow. Main eigenfrequencies and sudden puffs on the power spectra are indicated. 831
Fig. 3 – Details of the power spectrum relative to three moments (of less than 10 minutes to one hour) hours before the Mirabella M=2.1 earthquake. Periodic modulations of the noise of less than 10 minutes were evidenced between 200 and 800 Hz, on the left. The entire series of resonances from 19 to 170 Hz appeared during the damping interval at the centre. A detail of one of the three puffs is reported on the right where the sudden increase followed by a gradual fading that lasted two minutes is shown. The right plot also shows an unexpected growth of sound in a well-defined range between 55 and 80 Hz. 832
F. D’Ajello Caracciolo1, I. Nicolosi1, V. Sapia1, V. Materni1, G. Tusa1, M. Paratore1, R. Azzaro1 833
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV) 833
Combining active and passive methods to understand the seismic velocity distribution in a thick Quaternary succession of the Po Plain. (Terre del Reno, Ferrara, Italy) 837
G. Di Giulio1, L. Minarelli1, M. Stefani2, G. Milana1, G. Tarabusi1, M. Vassallo1, S. Amoroso1,3, A. Affatato4, L. Baradello4, L. Petronio4 837
Inductive Induced Polarization Effects: the Loupe EM synthetic case study 842
F. Dauti1, A. Viezzoli2, G. Fiandaca1 842
1 The EEM Team for Hydro & eXploration, Dep. of Earth Sciences A. Desio, Università degli Studi di Milano, Milano (Italy) 842
2 Emergo s.r.l., Cascina (Italy) 842
M. Ercoli1*, N. Cavalagli2, M. Barchi1, C. Pauselli1, M. Porreca1, R. Lupi3. 851
Mapping surface/ground water interactions and embarkment composition along the Po river with transient electromagnetics 853
G. Fiandaca1, A. Signora1, S. Galli1, J. Chen1, C. Compostella1, M. Gisolo2, A. Viezzoli3 853
Acknowledgments 855
References 855
S. Galli1, A. Signora1, J. Chen1, F. Schaars2, M. Grohen3, G. Fiandaca1 856
1 The EEM Team for Hydro and eXploration, Dep. of Earth Sciences A. Desio, Università degli Studi di Milano, Milano (Italy) 856
2 Artesia Water, Schoonhoven (The Netherlands) 856
3 Wiertsema & partners, Tolbert (The Netherlands) 856
Figure 2: Comparison of standard inversion and bathymetric inversion of FloaTEM data. Top right: bathymetry incorporated in the inversion; Bottom left: standard inversion, without bathymetry incorporation; Top left: ratio between inversion with/without bathymetry incorporation; Bottom right: histogram of the ratio of the resistivity values of the two inversions. 858
Seismic noise surveys in the area of Etna volcano (southern Italy). 861
S. Hailemikael1, D. Famiani1, G. Milana1, G. Tusa2, M. Paratore2, G. Brunelli3, R. Azzaro2 861
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy. 861
2 Istituto Nazionale di Geofisica e Vulcanologia, Catania, Italy. 861
3 Istituto Nazionale di Geofisica e Vulcanologia, Milan, Italy. 861
Fig. 1 Map of investigated sites 863
Fig. 2 Azimuthal variation of H/V functions at selected nodal stations of the passive array survey carried out at Nicolosi (ENIC) monitoring site. 863
Fig. 3 Rayleigh and Love wave dispersion curves from RTBF analysis of the passive array data collected at Nicolosi (ENIC) seismic monitoring site. 864
S. Imposa1, S. Grassi1, G. Morreale1, C. Pirrotta1, L. Cavalier2, A. Gilotti3, D. Giuliano4, E. Cayre5, L.M. Caliò6 865
1 Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy 865
2 Unité mixte de Recherche Ausonius (UMR 5607), Université Bordeaux-Montaigne, Pessac, France 3 Greensol S.R.L., Syracuse, Italy 4 Department of Cultures and Society, University of Palermo, Palermo, Italy 5 Post-doc researcher, Grand Programme de Recherche Human Past, Université de Bordeaux, Talence (France) 865
6 Department of Human Science, University of Catania, Catania, Italy 865
Characterizing groundwater springs in the Italian Alps: an integrated geological, geophysical, and hydrogeological approach 871
Acknowledgments 873
D. Melegari1, G. De Donno1, E. Piegari2 875
1 DICEA (Sapienza - University of Rome, Rome, Italy) 875
2 DISTAR (Federico II - University of Naples, Naples, Italy) 875
Fig. 1 – Aerial image (a) and plan (b) of the municipal solid waste landfill in Central Italy, with the location of the four investigated ERT/IP lines (L1-L4) and of the five piezometers (P1-P5) 876
M. Pavoni 1, J. Boaga 1, A. Bast 2,3, Lichtenegger 2,3, J. Buckel 4 883
1Department of Geosciences, University of Padova, Padova, Italy. 883
2WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland. 883
3Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland. 883
4Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany. 883
G. Penta de Peppo1, M. Cercato1, G. De Donno1 888
1 “Sapienza” University of Rome – DICEA 888
A. Perrone1, J. Bellanova1, G. Calamita1, F. Falabella2, M.R. Gallipoli1, E. Gueguen1, A. Pepe2, S. Piscitelli1, V. Serlenga1, T.A. Stabile1 895
Fig. 1 – Map of Gorgoglione test site (Basilicata region, southern Italy) with location of the in-situ geophysical measurements carried out in the urban area. 896
G. Romano1, L. Capozzoli2, V. Lapenna2, M. Polemio3 898
Fig. 1 - The proposed geophysical approach for characterizing coastal areas of SUBGEO 900
Integrated GPR and FDEM to detect brines pockets in Continental Antarctica 901
I. Santin1, E. Forte1, M. Guglielmin2 901
1 Department of Mathematics, Informatics and Geosciences (University of Trieste, Italy) 901
2 Department of Theoretical and Applied Science (University of Insubria, Italy) 901
Fig. 1 – (A) Location map of CALM grid and Lake n.16 (light blue square) in Boulder Clay Glacier area (MZS: Mario Zucchelli Italian Station). (B) Ortophoto with superimposed the GPR profiles, in white, and the FDEM survey, in red. Yellow lines mark the position of the gravel landing strip. 902
Fig. 2 – Apparent conductivity map down to a nominal depth of 2.5 m on Lake n.16. Red dotted line marks the path of the FDEM survey, while the blue triangle the location of borehole BC1 (taken from Azzaro et al., 2021). 903
Fig. 3 – Exemplary GPR profiles on Lake n.16 (A, B) and on CALM grid (C, C’, C’’), both represented with white lines. C’ and C’’ display dominant frequency and chaos attributes, respectively, of profile C. Yellow dot marks the crossing point between A and B. Location of each GPR profile is highlighted by a coloured line: C, C’, C’’ with a blue line, while A and B with pink and magenta lines, respectively. Pink triangle marks the location of BC1. 904
A. Signora1, S. Galli1, F. Dauti1, A. L. Sullivan1, A. Lucchelli1, M. Gisolo2, G. Fiandaca1 909
1 The EEM Team for Hydro & eXploration, Department Of Earth Sciences “Ardito Desio”, Università degli Studi di Milano, Milano (Italy) 909
2 A2A Ciclo Idrico S.p.a. , Brescia (Italy) 909
EEMstudio: processing and modelling of electric and electromagnetic data in a QGIS plugin 916
N.A.L. Sullivan1, A. Viezzoli2, G. Fiandaca1 916
Introduction 916
QGIS Widget 917
Fig. 1 – QGIS main window with EEMstudio widget on the right, used for management of processing and modelling files. Once uploaded, the coordinates of the acquisition points are automatically added to the QGIS layer, among eventual other layers in the QGIS project. In this figure, two types of data are shown: galvanic and inductive (airborne). White dots are the electrodes, red circles and blue points are the positions of the quadrupoles used in the soundings selected in the galvanic processing app (Figure 2a). Black dots are the inductive soundings and yellow points are the soundings highlighted in red in the inductive processing app (Figure 2b). 917
Processing 917
Fig.2 – Processing window supporting a) galvanic data visualization b) inductive data visualization. In galvanic window, first section: electrode position; second section: data pseudosection; third section: model of rho0; fourth section: model of phi; right panel: IP decay for the selected quadrupoles in the pseudosection. In inductive window, first section: flight altitude; second section: data (blue dots); third section: model of rho0; first left panel: decay in correspondence of the red highlights in the sections; models of rho0 in correspondence of the red highlights in the sections. 918
Modelling 919
Fig3 – Modelling windows. a) Interface to gather all necessary files to launch easily inversions with EEMverter (Fiandaca et al. 2024). b) Model Builder, to build synthetic models. From left to right: table with the parameters and the associated colors, widgets to change the grid, grid where it’s possible to select the cells and assign a color, 1D model of the row marked in blue on the bottom of the grid. 919
Conclusions 919
Acknowledgments 920
References 920
Denser is better? Spatial sampling vs trace stacking in multichannel GPR data to improve sections and depth-slices readability for archaeological prospections. 926
Vergnano1, C. Comina1 926
1 Università degli Studi di Torino, department of Earth Sciences; Torino, Italy 926
Fig. 1 – Comparison between 1.25 m depth-slices from 3D data volumes created using 6 different subsets of the total 32 channels of the Stream C: : upper panels) all the 32 channels, VV+HH (spacing about 3 cm), only the VV channels (spacing about 4 cm), only the HH channels (spacing about 10 cm); lower panels) different subsets of the VV channels with spacing of about 12, 25 and 50 cm respectively. 928
Fig. 2 – Comparison between GPR sections before and after stacking. a1): after dewow, move startime, and background removal. a2): a1) + stacking of adjacent 5 channels. An energy decay gain filter was then applied to both sections to allow for meaningful visual readability. 929
Fig. 3 – a) Comparison between a 60 cm depth-slice from Tindari test site, a1): non stacked, a2) stacked with 5 channels. b) as a), but at 40 cm depth. 930
33_Abstract_GNGTS2024.pdf 934
GNGTS 2024 934
APPLIED GEOPHYSICS FOR ENERGY, ENVIRONMENT AND NEW TECHNOLOGIES 934
S. Berti1,2, M. Aleardi1, E. Stucchi1 936
1 Department of Earth Sciences (University of Pisa, Italy) 936
2 Department of Earth Sciences (University of Florence, Italy) 936
R. Carluccio1, I. Nicolosi1, F. D’Ajello Caracciolo1, L. Minelli1 948
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV) 948
J. Chen1, G. Fiandaca1 953
1The EEM Team for Hydro & eXploration, Department of Earth Sciences "Ardito Desio", University of Milano, Milano (Italy). 953
Acknowledgments 957
G. Fiandaca1, B. Zhang2, J. Chen1, A. Signora1, F. Dauti1, S. Galli1, N.A.L. Sullivan1, A. Bollino1, A. Viezzoli3 961
Introduction 961
Method and results 961
Acknowledgments 966
References 966
S. Galli1, F. Schaars2, F. Smits3,4, L. Borst5, A. Rapiti6, G. Fiandaca1 968
1 The EEM Team for Hydro and eXploration, Dep. of Earth Sciences A. Desio, Università degli Studi di Milano, Milano (Italy) 968
2 Artesia Water, 2871 BP Schoonhoven (The Netherlands) 968
3 Waternet, 1096 AC Amsterdam (The Netherlands) 968
4 Technical University of Delft, 2628 CD Delft (The Netherlands) 968
5 PWN, 1991 AS Velserbroek, (The Netherlands) 968
Figure 3. Comparison between Borehole#8 log (yellow star in Fig. 3) and inversion model. Left – AGMS joint inversion; right – AEM-only inversion. Blue lines – inversion model; black lines – resistivity logs; red lines – rejected data in resistivity log in the joint AGMS inversion. 973
F. Macelloni1, M. H. Altaf1, M. Aleardi1, E.M. Stucchi1 978
1 Department of Earth Sciences, University of Pisa, Pisa, Italy 978
Fig. 3 – a) Observed seismogram; b) seismogram computed from the mean model of the prior distribution; c) predicted seismogram; d) difference between observed and predicted seismograms. 983
a Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo 986
Fig. 1 – Schematic arrangement of the whole instrumentation deposited at the bottom of the c.p. D (a). In (b) and (c) a focus on the centering disc supporting the digitizer. 988
Fig. 2 – Seasonal and whole period PSD’s for the three components. All the curves are reported in grey, while the mean one is color-coded. Peterson reference curves in black. 989
Fig. 3 – “On demand” interface. In (a) the dialog box. In (b) the spectrograms (on the left) and the Power Spectral Density (on the right) for the three components. In (c) the signal polarization polar histogram and in (d) the amplitude spectra (on the top) and the horizontal-to-vertical spectral ratio (on the bottom). 990
J. B. May1, P. Bird2,1, M. M. C. Carafa1 993
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy 993
2 Department of Earth, Planetary, and Space Sciences, UCLA, U.S.A 993
Table 1: Searched models with improved Geometric mean score when compared to Earth5-049. 996
Felipe Rincón1, Sean Berti1,2, Mattia Aleardi1, Eusebio Stucchi1 1000
1 University of Pisa, 2 University of Florence 1000
A. Signora1, G. Fiandaca1 1013
1 The EEM Team for Hydro & eXploration Dep. Of Earth Sciences A. Desio, Università degli Studi di Milano, Via Botticelli 23, Milano (Italy) 1013

RkJQdWJsaXNoZXIy MjQ4NzI=