11_Abstract_GNGTS2024.pdf
|
9 |
Estimate of seismic fracture surface energy from pseudotachylyte-bearing faults
|
9 |
S. Aldrighetti1, G. Di Toro1,2, G. Pennacchioni1
|
9 |
1 Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy
|
9 |
Offshore fault geometry revealed from earthquake locations using new state-of-art techniques: the case of the 2022 Adriatic Sea earthquake sequence
|
12 |
Like An*1, Francesco Grigoli2, Bogdan Enescu1,3, Mauro Buttinelli4, Mario Anselmi4, Irene Molinari4, and Yoshihiro Ito5
|
12 |
1Department of Geophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
|
12 |
2Department of Earth Sciences, University of Pisa, Pisa, Italy
|
12 |
3National Institute for Earth Physics, Magurele, Bucharest, Romania
|
12 |
4National Institute of Geophysics and Volcanology, Italy
|
12 |
5Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan
|
12 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
|
13 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy
|
13 |
3 Università degli Studi di Roma Tre, Roma, Italy
|
13 |
A. Arrighetti1, B. Gelli2, V. Castelli3
|
16 |
1 École normale supérieure - Université PSL (AOROC UMR 8546), Paris, France;
|
16 |
2 Università degli Studi di Siena, Italia; 3 INGV, Bologna/Ancona, Italia
|
16 |
Fig. 1 – The 1467 Siena seismic sequence according to CPTI15 v. 4.0 (Rovida et al., 2022).
|
17 |
Three-dimensional magnetotelluric inversion applied in a sector of the Irpinia Fault System (Southern Apennine)
|
25 |
1 Istituto di Metodologie per l’Analisi Ambientale, CNR – Tito Scalo, PZ
|
25 |
2 Istituto di Geofisica e Vulcanologia INGV, Roma
|
25 |
3 Università degli Studi di Bari
|
25 |
The harsh life of an earthquake in the region that doesn't exist
|
27 |
S. Baranello1,2, R. Camassi1, V. Castelli1
|
27 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
|
27 |
The historical research on earthquakes often clashes with harsh reality: if the earthquake is not destructive, if it occurs during a particularly complex historical period, dominated by wars, epidemics, and other misfortunes, there is the possibility of its memory being lost. Sometimes, in addition to the scant production of testimonies about the earthquake and its impact, possible problems arise in the preservation of such testimonies. And finally, the obstacle course of the historical seismologist can find many doors closed today. Literally.
|
27 |
And this happens especially in the region that doesn't exist...
|
27 |
When any of these circumstances (or all of them) occur, research must necessarily pursue not only written testimonies but also simple clues, indirect evidence of the earthquake's occurrence, such as local traditions, the presence of a local earthquake-related cult, etc.
|
27 |
Baratta (1901) devotes only a few very generic lines to the Molise earthquake of May 1712. First of all, he says that an earthquake was felt in early May in Naples, and that it caused panic among the Neapolitans. To this news, Baratta adds that an earthquake was also felt in Campobasso where "some houses and churches were ruined." Finally, he mentions several shocks that were felt in Benevento between May and June 15.
|
27 |
Baratta's sources are respectively a summary of the Bologna Gazette published by De Rossi (1889) and a brief mention of Campobasso by Sarnelli (1716).
|
27 |
In the Postpischl (1985) catalogue, these pieces of information are summarized into an event dated generically to May 1712, located in Bojano, with an epicentral intensity of VIII MCS (Tab. 1).
|
27 |
The AMGNDT995 data sheet dedicated to the 1712 earthquake considers various information not clearly attributable to a single event and downgrades the earthquake, dated May 8th, locating it in Campobasso with an epicentral intensity uncertain between VI and VII MCS. The study suggests that the assertion that houses and churches were 'ruined' refers to a level of moderate, non-structural damage. This interpretation has been incorporated into the CPTI catalogue in its various versions.
|
28 |
Recently, in the frame of a research project aimed at improving the preliminary AMGNDT995 studies, the case of the 1712 earthquake has been reopened, following the report of the presence of the cult of San Michele in Ripalimosani, connected to the averted danger during an earthquake dated May 1712 [Mascia, 2000].
|
28 |
Overall, this is certainly a very interesting and complex situation regarding a certainly important earthquake that affected a very large area of central Italy (Fig. 1).
|
28 |
Fig. 1 – Distribution map of the distribution of the effects of the earthquake of 8 May 1712
|
29 |
Andrea Brogi1,2, Paola Vannoli3, Martina Zucchi1, Pierfrancesco Burrato3, Umberto Fracassi3, Gianluca Valensise3, Hsun-Ming Hu4,5, Chuan-Chou Shen4,5
|
31 |
1 Department of Earth and Geoenvironmental Sciences (University of Bari, Italy)
|
31 |
2 CNR-IGG, Institute for Geosciences and Georesources (C.N.R., Italy)
|
31 |
3 Istituto Nazionale di Geofisica e Vulcanologia (Italy)
|
31 |
4 High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, (National Taiwan University, Taiwan, ROC)
|
31 |
Fluid-rock interaction in eclogite-facies meta-peridotites (Erro-Tobbio Unit, Ligurian Alps)
|
35 |
S. Cacciari1, G. Pennacchioni1, M. Scambelluri2, E. Cannaò3, G. Toffol1
|
35 |
1 Università degli Studi di Padova, Italy
|
35 |
2 Università degli Studi di Genova, Italy
|
35 |
3 Università degli Studi di Milano - La Statale, Italy
|
35 |
Scambelluri M., Tonarini S.; 2012: Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40, 10, 907–910. doi: 10.1130/G33233.1
|
38 |
Stress drop scaling is still a very controversial topic: is it real or apparent?
|
39 |
G. Calderoni1
|
39 |
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy)
|
39 |
The stress drop scaling is still an unresolved issue and continues to be controversial in the scientific community. However, knowledge of seismic source scaling parameters plays a fundamental role in assessing the seismic forecasting in a given area and in improving ground motion predictions for seismic hazard mitigation. For this reason, this study compares the Brune stress drop of the earthquake sequence that struck the 2010-2014 Pollino area in the southern Apennines with those estimated for other earthquakes that occurred in different areas of the Apennines during the following seismic sequences: 2009 L’Aquila (Calderoni et al., 2013), 2016-2017 Amatrice (Calderoni & Abercrombie 2023), 2013-2014 Sannio-Matese (Calderoni et al., 2023) and 2019 Northern Edge of the Calabrian Arc Subduction Zone (Calderoni et al., 2020). Three different methods are used, and the results are compared with previous studies.In the first procedure (Calderoni et al. 2019) a two-step approach is used to model the attenuation and then estimate the source parameters from individual earthquake spectra. In the second procedure, an EGF approach is applied. In the third procedure, a modified EGF approach is applied using a scaling law derived by Calderoni et al., (2013) for the L’Aquila 2009 seismic sequence. To gain deeper insights into the interpretation of the result, the structural complexities and tectonic barriers that control seismic activity in the Pollino area are considered (Cirillo et al., 2022).
|
39 |
A “new” Aeolian event in the 20th century: the 19th June 1916 earthquake in Filicudi Island.
|
41 |
C.H. Caracciolo
|
41 |
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Italy
|
41 |
Conclusions
|
44 |
What about the predecessors of the February 2023 earthquakes in Eastern Anatolia?
|
56 |
V. Castelli1, K. Sesetyan1,2, A.A. Gomez Capera3, C. Meletti4, M. Stucchi1
|
56 |
1Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna, Bologna/Ancona, Italy;
|
56 |
2Bogazici University, Kandilli Observatory and Earthquake Research Institute, Dept. of Earthquake Engineering, Istanbul, Turkey;
|
56 |
3Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Milano, Milano, Italy;
|
56 |
4Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Pisa, Pisa, Italy.
|
56 |
«Se dice etiam per teremoti esser sommerso et ruinato tre terre» (How a large historical earthquake was born).
|
60 |
V. Castelli 1
|
60 |
1 Istituto Nazionale di Geofisica e Vulcanologia-Sezione di Bologna, Bologna/Ancona, Italy
|
60 |
Fig. 1 – Excerpt of the report written Maestro Andrea on 10 March 1514, as transcribed in Venice by Marin Sanudo sometime in the second half of 1514 (Biblioteca Nazionale Marciana, Venice).
|
60 |
Active Transpressive Faulting Along the High Atlas Mountains: the 8 September 2023, MW 6.8, Morocco Earthquake
|
63 |
D. Cheloni1, N. A. Famiglietti2, R. Caputo3, C. Tolomei1, A. Vicari2
|
63 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
|
63 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Irpina, Italy
|
63 |
3 Department of Physics & Earth Sciences, Ferrara University, Italy
|
63 |
Geodetic Modelling of the 2023 MW 7.8 and 7.6 Türkiye Earthquake Sequence
|
66 |
D. Cheloni1, N. A. Famiglietti2, A. Akinci1, R. Caputo3, A. Vicari2
|
66 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
|
66 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Irpina, Italy
|
66 |
3 Department of Physics & Earth Sciences, Ferrara University, Italy
|
66 |
Seismic cycle in bituminous dolostones (Central Apennines, Italy)
|
70 |
M. Chinello1, E. Bersan, M. Fondriest1, T. Tesei1, G. Di Toro1,2
|
70 |
Estimating the source parameters of a moderate earthquake using the second seismic moments
|
74 |
Cuius1,2, A. Saraò3, H. Meng4, G. Costa1
|
74 |
1 Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
|
74 |
2 National Institute of Geophysics and Volcanology, INGV, Roma, Italy
|
74 |
3 National Institute of Geophysics and Applied Geophysics, OGS, Trieste, Italy
|
74 |
4 Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
|
74 |
Introduction
|
74 |
The study of earthquake generation and associated seismic parameters such as seismic moment, rupture size, rupture velocity and direction, and stress drop is crucial for understanding earthquake dynamics and the underlying physics of the seismic process. This information plays an important role in the estimation of ground shaking near the earthquake source and in the assessment of seismic hazard, even for low to moderate magnitude earthquakes.
|
74 |
The kinematic properties of small earthquakes are often difficult to determine, and simple models are often used to represent these events, although improved records show that source complexity is common even for small earthquake ruptures (e.g. Calderoni and Abercrombie, 2023 and reference therein).
|
74 |
A critical task in determining finite source attributes for moderate and low magnitude earthquakes requires good removal of path and site effects. To address this problem, several methods based on empirical Green's function (EGF) deconvolution have been developed in recent decades. Although the EGF offers several advantages, its application is associated with some difficulties, as there are often no focal mechanisms for small earthquakes and source effects have been observed even for low energy events (Calderoni et al. 2023).
|
74 |
The simplest general representation of an earthquake that contains information about the rupture extent and directivity is the point-source representation plus the variances or second-degree moments of the moment-release distribution. The hypocenter and the origin time of the earthquake correspond to the spatial and temporal average (first degree moment) of the release moment distribution. The information about the rupture extent, the characteristic duration and the direction of rupture propagation correspond to the variance of the moment distribution in the spatial, temporal and spatio-temporal domain (second-degree moments). Seismic moments are calculated from apparent durations measured from apparent source time functions (ASTF) for each station after removal of path effects. The ASTF is thus the projection of the rupture process onto the seismic ray path, and its properties also depend on the azimuth and take-off angles (e.g. McGuire, 2004). For a unilateral rupture, the ASTF observed from stations in the direction of propagation would be significantly shorter than the ASTF from stations in the opposite direction.
|
74 |
A major advantage of the second moments method is that it can theoretically be applied to all earthquakes, regardless of their magnitude and complexity, and without requiring the assumptions of an a priori source model (e.g. McGuire 2004; Meng et al., 2020; Cuius et al., 2023). It is also a consistent tool for evaluating scaling relationships between finite source attributes and earthquake magnitudes for large and small earthquakes and for resolving fault plane ambiguity.
|
75 |
However, the elimination of the path effect is crucial, and a biased ASTF calculation would lead to inaccurate calculations of the second seismic moments. However, there may also be other factors that influence the results of the second moments, even if the propagation effects have been correctly removed.
|
75 |
The aim of this study is to implement and test an efficient method for estimating source parameters and rupture directivity in near real-time for medium and small earthquakes. To achieve our goal, we implemented an approach developed by McGuire et al. (2004), which consists of calculating the second-degree seismic moments (Meng et al., 2020; Cuius et al., 2023). In this paper, we first perform a study with some synthetic tests to evaluate the influence of uncertainties related to our prior knowledge and observations on the resulting source parameters (Cuius et al. 2023). We then apply the method to a real earthquake in Italy and present the result.
|
75 |
Analysis of the sensitivity of the second moments tensor resolutions
|
75 |
To evaluate the sensitivity of the second moment solutions, we used synthetic ASTFs computed for a rectangular plane fault discretized by a grid of cells, each assigned a specific slip value. Full details can be found in Cuius et al. 2023. The input parameters used to model the ASTF for a magnitude Mw 4.6 earthquake source are listed in Tab. 1. We assumed that the epicenter was located in central Italy and approximated the fault as a 3.0 km box model (Fig. 1). The rupture area was divided into 12x12 cells, and the slip distribution and rupture time for the unilateral (Fig. 1a; 1b) and bilateral (Fig. 1d; 1e) scenarios were taken from a previous study of a similar magnitude earthquake (SRCMOD database - Mai and Thinbgaijam, 2014), with a focal mechanism of 247° strike, 46° dip and 40° dip. Using the actual station configuration, we calculated the ASTFs with a sampling frequency of 100 Hz and a source time function of 3 seconds. A uniform propagation of the rupture front with a rupture velocity of 2.75 km/s was assumed, which corresponds to 0.9 times the S-wave velocity in the source region. A simplified 1-D velocity model for central Italy was used to model the ASTF (Cuius et al., 2023).
|
75 |
Tab. 1. Input parameters used to model the unilateral and bilateral scenarios for the characteristic rupture size ( and ), characteristic rupture duration ( ), centroid rupture velocity ( ) and directivity (dir).
|
75 |
Fig 1. Input source for unilateral (A,B) and bilateral (D,E) scenarios. The star represents the hypocenter, the dot represents the centroid location, and the arrow indicates the rupture direction. Panels (C,F) show the ASTFs calculated from the respective models for three different azimuth directions.
|
76 |
To investigate how the uncertainties introduced by the input data may affect the solutions of the resolved second seismic moments, we used the bootstrap approach. In this technique, perturbations are introduced for each input parameter to be analyzed by generating 1000 variations around the mean value. An inversion is then performed to assess the impact on the mean and standard deviation of the resulting data. The workflow is summarized in Fig. 2.
|
76 |
We investigated the uncertainties associated with the ASTF, the location of the hypocenter, the station distributions around the source, the focal mechanism, and the velocity model used for ray tracing. Some of these tests are interrelated. For example, the uncertainties in the position of the hypocenter and the velocity model affect the calculated ray path, and both the different focal mechanism and station coverage affect the resolution of the fault plane. The uncertainties in the epicenter estimates were not investigated because they have negligible effects on the slowness vectors in the inversion of the second moments.
|
76 |
Results of the synthetic tests
|
76 |
The sensitivity analysis performed in this study shows that the uncertainties in the input data have different effects on the calculation of the source parameters and that an accurate measurement of the ASTF as well as the velocity model play the most important role in influencing the inversion process. The results of our tests (Tab. 2 and Fig. 3) show that the main source parameters, i.e. fracture size, swelling duration and centroid velocity, are generally well reproduced within the standard deviation. The source duration resulting from the inversion process is strongly influenced by the duration of the input ASTF, and even 10 % influences the inversion of the second moment tensor. In the case of dense instrumentation, the horizontal location of the earthquake can be well resolved, but the resolution of the earthquake depth is largely determined by the velocity model, and an inaccurate earthquake location can lead to uncertainties in the resolved second moments. Care must also be taken to avoid artifacts due to the discretization of the velocity model when the hypocenter is located at an interface between two layers with high velocity contrast.
|
77 |
Fig. 2 Flowchart of the perturbation test. For each test, we computed 1000 random station configurations or perturbed input variables (depth, velocity model, focal mechanism, or observed c) with a given standard deviation. Then we performed the inversion and calculated the source parameters and directivity. Finally, we calculated the mean and dispersion of the output variables of the 1000 scenarios.
|
77 |
The values of the directivity depend on the ASTF duration, the choice of velocity model and the focal mechanism (Fig. 3). To ensure good resolution of the fault plane, good coverage of the ray path is critical for both upward and downward waves (McGuire, 2004). The component of rupture directivity along the dip can only be well determined if stations directly above the hypocenter are available, as the seismic rays are nearly horizontal at most other stations.
|
77 |
Fig. 3 Violin plots showing the Mean values and dispersions of each output variable resulting from each perturbation test given on the x-axis, i.e., focal mechanism (fm), observed τc (oτc ), velocity models (mA and mB, respectively), hypocentral depth (h), and station configuration (sc) for the unilateral scenario. (A–E) represent the solutions for the characteristic length, characteristic width, source duration, directivity and centroid rupture velocity respectively. The y-axis indicates the value of the output variable. The shape of each violin graph reflects the numerical counts of the resulting value. The red line serves as reference, indicating the input value.
|
78 |
Application to real case: the Mw 4.6 Central Italy earthquake
|
80 |
The method was then applied to study the Mw 4.6 event of March 2023 in central Italy, using data from the Italian seismic network (RSN (Amato et al., 2008) and the Italian accelerometry network (RAN (Costa et al., 2022)). We compute the ASTFs through the EGF deconvolution using the P and S waves.
|
80 |
We calculated the second seismic moment to obtain information about the directivity and source parameters. The main parameters calculated with this method are the following = 1.16 km, = 0.615, = 0.14 s, = 1.86 m/s, dir = 64, stress drop = 7.37 MPa). The relatively small value of is possibly due to the poor resolution of the vertical component and can be explained by the interaction of two factors: the vertical rupture plane and the small number of stations in the immediate vicinity of the epicenter (< 5 km).
|
80 |
Conclusions
|
80 |
The use of second-moment tensors to determine the source parameters, including directivity, of moderate-magnitude earthquakes could be a valuable tool to improve our understanding of the source dynamics in a given area and to the risk mitigation. One possible application of the second-moments method to small earthquakes would be to identify portions of large faults that produce super-shear ruptures and correlate them with the geology of the fault zone. The second moments method also provides lower constraints on rupture velocity, which can be particularly useful for unilateral ruptures. However, before the results can be interpreted, the resolution limits of the method need to be known due to the possible uncertainties of the parameters used as inputs to the computational procedure.
|
80 |
To overcome the difficulties related to the analysis of noisy signals in the time domain, which can be an important limitation in the calculation of ASTFs and consequently the source duration for low magnitude events, an experimental approach based on the frequency domain is currently being developed. Although the frequency domain deconvolution-based method is currently more time consuming than time domain deconvolution, it can be used in situations where the determination of reliable ASTFs is difficult due to noise, which is often the case for low magnitude earthquakes.
|
80 |
Acknowledgements
|
80 |
We are deeply grateful to the Italian Department of Civil Protection – Presidency of the Council of Ministers for funding this research.
|
80 |
References
|
81 |
Amato, A., & Mele, F. (2008). Performance of the INGV National Seismic Network from 1997 to 2007. Annals of Geophysics.
|
81 |
Calderoni, G., and Abercrombie, R. E. (2023). Investigating spectral estimates of stress drop for small to moderate earthquakes with heterogeneous slip distribution: Examples from the 2016-2017 Amatrice earthquake sequence. J. Geophys. Res.: Solid Earth., 128, e2022JB025022, doi: 10.1029/2022JB025022
|
81 |
Costa, G., Brondi, P., Cataldi, L., Cirilli, S., Ertuncay, D., Falconer, P., ... & Turpaud, P. (2022). Near-Real-Time Strong Motion Acquisition at National Scale and Automatic Analysis. Sensors, 22(15), 5699.
|
81 |
Cuius, A., Meng, H., Saraò, A., & Costa, G. (2023). Sensitivity of the second seismic moments resolution to determine the fault parameters of moderate earthquakes. Frontiers in Earth Science, 11.
|
81 |
Mai, P. M., and Thingbaijam, K. K. S. (2014). SRCMOD: an online database of finite-fault rupture models. Seismol. Res. Lett. 85, 1348–1357. doi:10.1785/0220140077
|
81 |
McGuire, J. J. (2004). Estimating finite source properties of small earthquake ruptures. Bulletin of the Seismological Society of America, 94(2), 377-393.
|
81 |
Meng, H., McGuire, J. J., & Ben‐Zion, Y. (2020). Semiautomated estimates of directivity and related source properties of small to moderate Southern California earthquakes using second seismic moments. Journal of Geophysical Research: Solid Earth, 125(4), e2019JB018566.
|
81 |
Corresponding author: arianna.cuius@ingv.it
|
81 |
A natural pump-probe experiment reveals nonlinear elastic properties along the Irpinia Fault, Southern Apennines
|
82 |
Source parameter estimation by using Q tomography: the potentiality of exploiting large sequence of aftershocks
|
84 |
P. De Gori1, F. P. Lucente1, C. Chiarabba1
|
84 |
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy
|
84 |
Calibration of the local magnitude scale (ML) for eastern Cuba
|
86 |
E. Diez1, D. Sandron2, M. Cutie1, M. Guidarelli2
|
86 |
1 Centro Nacional de Investigaciones Sismológicas (CENAIS), Santiago de Cuba, Cuba.
|
86 |
2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale — OGS, Sgonico, Italy.
|
86 |
IASPEI (International Association of Seismology and Physics of the Earth’s Interior (2013). Summary of magnitude working group recommendations on standard procedures for determining earth- quake magnitudes from digital data, available at http://download .iaspei.org/commissions/CSOI/Summary_WG_recommendations_ 20130327.pdf (last accessed April 2023).
|
89 |
Moreno, B., and O. González (2001). Local magnitude scale for the eastern region of Cuba, in Sismicidad de Cuba y estructura de la corteza, J. L. Alvarez Gómez (Editor), Editorial Academia, La Habana, Cuba, ISBN: 978-959-02-0242-1 (in Spanish).
|
89 |
Moreno, B., M. Grandison, and K. Atakan (2002). Crustal velocity model along the southern Cuba margin. Implications for the tectonic regime at an active plate boundary. Geophys. J. Int. 151, 632–645.
|
89 |
Richter, C. F. (1935). An instrumental earthquake magnitude scale, Bull. Seismol. Soc. Am. 25, no. 1, 1–32.
|
89 |
Sandron, D., G. F. Gentile, S. Gentili, A. Sarao, A. Rebez, M. Santulin, and D. Slejko (2015). The Wood-Anderson of Trieste (northeast Italy): One of the last operating torsion seismometers, Seismol. Res. Lett. 86, no. 6, 1645–1654, doi: 10.1785/0220150047.
|
89 |
Uhrhammer, R. A., and E. R. Collins (1990). Synthesis of Wood– Anderson seismograms from broadband digital records, Bull. Seismol. Soc. Am. 80, 702–716.
|
89 |
D. Famiani1, F. Cara1, G. Di Giulio2, M. Vassallo2, G. Milana1
|
94 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy.
|
94 |
2 Istituto Nazionale di Geofisica e Vulcanologia, L’Aquila, Italy.
|
94 |
Early results of a systematic revision of Ferrarese seismicity of the 13th-15th centuries.
|
97 |
A. Faoro1, R. Camassi1, V. Castelli2
|
97 |
1 Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna, Bologna, Italy,
|
97 |
2Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna, Bologna/Ancona, Italy
|
97 |
Fig. 1 – Seismic history of Ferrara (1000-2020) from Locati et al. (2022). The dated earthquakes are local ones (i.e. with epicentral location “in” Ferrara or in the “Ferrarese”).
|
98 |
H. Fernandez1,2, G. D. Chiappetta1, A. Schibuola1,3, M. La Rocca4, S. Gentili1, L. Peruzza1
|
100 |
1 OGS, Trieste, Italy
|
100 |
2 Università degli Studi "G. d'Annunzio" Chieti - Pescara, Italy
|
100 |
3 Université Gustave Eiffel, Marne-la-vallée, France
|
100 |
Fig. 1 - Seismic activity on the Esaro valley, Northern Calabria, Italy (1985-2023)
|
101 |
Linking Seismicity, Geochemical And Environmental Data: The New Frontier Of Multiparametric Networks
|
105 |
E. Ferrari1, M. Massa1, A.L. Rizzo2,1, S. Lovati1, F. Di Michele1
|
105 |
1 National Institute of Geophysics and Volcanology (INGV), Milano, Italy
|
105 |
2 Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
|
105 |
A. Ferreri1, A. Romeo2, R. Giannuzzi1, G. Cecere2, S. de Lorenzo1, L. Falco2, M. Filippucci1,2, M. Michele2, G. Selvaggi2, A. Tallarico1,2
|
107 |
1 Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Bari, Italy
|
107 |
de Lorenzo S., Michele M., Emolo A., and Tallarico A.; 2017: A 1D P-wave velocity model of the Gargano promontory (southeastern Italy). J. Seismol., 21 (4), 909–919, doi:10.1007/s10950-017-9643-7
|
108 |
Filippucci M., Miccolis S., Castagnozzi A., Cecere G., de LorenzoS., Donvito G., Falco L., Michele M., Nicotri S., Romeo A., Selvaggi G. and Tallarico A.; 2021b: Gargano Promontory (Italy) microseismicity (2013-2018): waveform data and earthquake catalogue. Mendeley Data, V3, doi: 10.17632/7b5mmdjpt3.3
|
108 |
Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences and gempa GmbH (2008). The SeisComP seismological software package. GFZ Data Services. doi: 10.5880/GFZ.2.4.2020.003.
|
108 |
Lomax A., Virieux J., Volant P. and Berge-Thierry C.; 2000: Probabilistic Earthquake Location in 3D and Layered Models. In: Thurber C.H., Rabinowitz N. (eds) Advances in Seismic Event Location. Modern Approaches in Geophysics, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9536-0_5.
|
108 |
Scafidi D., Spallarossa D., Ferretti G., Barani S., Castello B., and Margheriti L.; 2019: A complete automatic procedure to compile reliable seismic catalogs and travel‐time and strong‐motion parameters datasets. Seismological Research Letters, 90(3), 1308-1317, doi: 10.1785/0220180257
|
108 |
University of Bari Aldo Moro. (2013). OTRIONS [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OT
|
108 |
Monitoring tectonic environments with DAS: the case study of the Irpinia Near Fault Observatory
|
109 |
R. Fonzetti 1, 2, L. Valoroso 1, A. Govoni 1, P. De Gori 1, C. Chiarabba 1
|
112 |
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome (RM)
|
112 |
2 Università degli Studi Roma Tre , Rome (RM)
|
112 |
Fig.1 – a) The entire 2009 QF seismicity with at least 6 P- and 4 S arrival times (blue dots) relocated by using Hypoellipse with an optimised 1D-velocity model. The best locations (selecting criteria are specified in the upper left corner of the map) are shown. Red triangles are the seismic stations used by QF for the locations. Dark grey lines represent the main faults of the area. Pink lines are the evidence of surface rupture during the L’Aquila 2009 seismic sequence. Black straight lines are traces of vertical cross sections; b) some of the most interesting vertical sections (strike N°50E) showing the depth distribution of the seismic events occurred within ± 0.8 km distance from the sections; c) above, the magnitude vs time diagram and histogram of magnitude values; bottom) histograms showing the number of P- and S- waves, RMS (s), ERH (km), ERZ (km) and GAP (°).
|
113 |
Introduction
|
124 |
Previous seismic source models for the 1783 seismic sequence
|
125 |
Structural data
|
126 |
Seismological data: 3D fault modelling from earthquakes distribution
|
126 |
Slip Tendency
|
129 |
Conclusion
|
129 |
References
|
131 |
F. Grigoli1, C. Rossi2, C. Cocorullo2
|
132 |
1 University of Pisa, Italy
|
132 |
2 Seismix s.r.l., Italy
|
132 |
Supervised and unsupervised machine learning approaches for identifying the preparatory process of moderate earthquakes at The Geysers, California
|
142 |
A.G. Iaccarino1, M. Picozzi1,2
|
142 |
1Università degli Studi di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
|
142 |
2National Institute of Oceanography and Applied Geophysics, OGS, Sgonico, Italy
|
142 |
Fig. 1 – Maps of the M3.5 events compared to the areal well density (contour plot). The events with a preparatory phase are shown as red squares; yellow squares refer to the events with an unclear preparatory phase; the other M3.5 events as grey squares.
|
143 |
G. Lavecchia1,2, C. Andrenacci1,2, S. Bello1,2, F. Pietrolungo1,2, D. Cirillo1,2, A. Carducci1,2, F. Ferrarini1,2, F. Brozzetti1,2, R. de Nardis1,2
|
152 |
1 DiSPuTer, Università degli Studi “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
|
152 |
2 CRUST - Centro inteRUniversitario per l’analisi Sismotettonica Tridimensionale, Chieti, Italy
|
152 |
Analysis and preliminary results of the Mw 4.9, Marradi seismic sequence (September 18th, 2023), in the northern Apennines, carried out by the BSI working group.
|
154 |
A. Lisi, L. Arcoraci, P. Battelli, M. Berardi, B. Castello, D. Latorre, A. Marchetti, M. Michele, V. Misiti, A. Nardi, D. Piccinini, A. Rossi, Gruppo di lavoro del Bollettino Sismico Italiano*
|
154 |
Fig.1 – Comparison between hypocentral parameters (a,b,c) and used time readings (d) for the same 352 earthquakes detected, during the first 3 days of the sequence, from seismic monitoring room and revised from BSI.
|
155 |
Fig.2 – Map view: Earthquakes recorded in the first 3 days of the sequence and revised by the BSI working group. Events are initially relocated using the NonLinLoc code (Lomax et al., 2000) and the local 1D velocity model from Pastori et al. (2019). Subsequently, a double-difference code (Waldhauser and Schaff, 2008) is applied to improve the geometries of the activated structures. The two vertical cross-sections are oriented perpendicular to the strike of the computed TDMT solution of the Mw=4.9 event (Scognamiglio et al., 2006).
|
156 |
Fig.3 – Cumulative number of events over the time and relative magnitude distribution until October 10th. (a)The colours represent the average cross-correlation (CC) of each detected event. (b) New detected events are shown in red colour while the templates are in grey. (c ) The Gutenberg - Richter relationship. (d) The magnitude of matched events (in red with their respective error bars) and that of the templates (in black).
|
157 |
Studying the Viability of Kinematic Rupture Models and Source Time Functions with Dynamic Constraints
|
158 |
M.E. Locchi1, F. Mosconi1, M. Supino2, E. Casarotti2, E. Tinti1,2
|
158 |
1 Sapienza Università di Roma, Rome, Italy;
|
158 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy;
|
158 |
Fig. 1: Workflow for one model: results from spontaneous rupture of a bidirectivity model on the left; kinematic inversions results using ground-motion from dynamic model. For each source time function different rise time and rupture velocity were tested. The slip distribution from best models of each source time function.
|
159 |
Seismic attenuation and stress on the San Andreas Fault at Parkfield: are we critical yet?
|
168 |
L. Malagnini*1,2, R. M. Nadeau2, and T. Parsons3
|
168 |
Guilhen, A. and Nadeau, R.M. (2012), Episodic tremors and deep slow-slip events in Central California, EPSL, 357-358, 1-10.
|
176 |
Malagnini, L., Dreger, D. S., Bürgmann,R., Munafò, I., & Sebastiani, G. (2019). Modulation of seismic attenuation at Parkfield, before and after the 2004 M6 earthquake. Journal of Geophysical Research: Solid Earth,124, 5836–5853. https://doi.org/10.1029/2019JB017372.
|
176 |
Malagnini, L., & D.S. Dreger (2016). Generalized Free-Surface Effect and Random Vibration Theory: a new tool for computing moment magnitudes of small earthquakes using borehole data, Geophys J Int (2016) 206 (1): 103-113. https://doi.org/10.1093/gji/ggw113.
|
176 |
Nadeau, R.M., Guilhem, A. (2009). Nonvolcanic Tremor Evolution and the San Simeon and Parkfield, California, Earthquakes,Science 325, 191, DOI: 10.1126/science.1174155.
|
176 |
Sebastiani, G., & L. Malagnini (2020). Forecasting the Next Parkfield Mainshock on the San Andreas Fault (California), Journal of Ecology and Natural Resources, vol. 4, issue 3, https://doi.org/10.23880/jenr-16000218.
|
176 |
Density values in the shallow crust: analysis and comparison of deep well data in the Adriatic region (Italy)
|
177 |
M.T. Mariucci1, P. Montone1, P. Balossino2
|
177 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
|
177 |
2 Former ENI S.p.A. Natural Resources, Italy
|
177 |
Gardner G.H.F., Gardner L.W., Gregory A.R.; 1974: Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780.
|
177 |
3D Hypocenters relocation in high-resolution central Mediterranean velocity model
|
179 |
I. Menichelli1*, P. De Gori1, C. Chiarabba1
|
179 |
1 Istituto Nazionale di Geofisica e Vulcanologia (Rome, Italy)
|
179 |
In this study, a new 3D relocated hypocenters catalogue has been built for the Italian region using an updated 3D velocity model computed for the central Mediterranean area (Menichelli et al., 2023). Classical one-dimensional velocity models, due to their limitation in recovering lateral heterogeneous variations in the velocity structure, offer only a simplified depiction of the reality. For this reason, the necessity to use 3-D velocity models in the location of hypocenters, which consider the inhomogeneous structure of the different layers that constitute the earth's interior, has been emerging in recent years.
|
179 |
The 3D tomographic model used has been computed inverting P- and S- arrival times recorded between 2014-2021 by the RSN (Italian Seismic Network) and AlpArray (AlpArray 2015; Hetenyi et al., 2018) seismic network. In particular, the seismic data set includes Pg, Pn, Sg, and Sn, and the related arrival times were manually picked within a maximum epicentral distance of 1000 km.
|
179 |
Thurber, C., & Eberhart-Phillips, D. (1999). Local earthquake tomography with flexible gridding. Computers & Geosciences, 25(7), 809-818.
|
181 |
Exploring Italy's Present-Day Stress Field Complexity through Utilisation of Geophysical, Geological, and In Situ Drilling Data
|
182 |
P. Montone and M. T. Mariucci
|
182 |
Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
|
182 |
Fig. 1 – New data from 21 earthquake focal mechanisms and 9 breakout directions. Further 10 wells with no ovalization are highlighted with open circles.
|
183 |
ISIDe Working Group; 2007: Italian seismological instrumental and parametric database (ISIDe). Rome, Italy: Istituto Nazionale di Geofisica e Vulcanologia. doi:10.13127/ISIDE.
|
184 |
Mariucci M.T., Montone P.; 2022: IPSI 1.5, database of Italian present-day stress indicators. Rome, Italy: Istituto Nazionale di Geofisica e Vulcanologia. doi:10.13127/IPSI.1.5.
|
184 |
Montone P., Mariucci M.T.; 2023: Deep well new data in the area of the 2022 Mw 5.5 earthquake, Adriatic Sea, Italy: In situ stress state and P-velocities. Front. Earth Sci. 11:1164929. doi: 10.3389/feart.2023.1164929.
|
184 |
Montone P., Mariucci, M.T.; 2016: The new release of the Italian contemporary stress map. Geophys. J. Int. 205, 1525–1531. doi:10.1093/gji/ggw100.
|
184 |
Scognamiglio L., Tinti E., Quintiliani M.; 2006: Time domain moment tensor (TDMT). Rome, Italy: Istituto Nazionale di Geofisica e Vulcanologia. doi:10.13127/TDMT.
|
184 |
Modeling dynamic ruptures on extended faults for microearthquakes induced by fluid injection
|
185 |
F. Mosconi1, E. Tinti1,2, E. Casarotti2, A. A. Gabriel3, R. Dorozhinskii4, L. Dal Zilio5, A. P. Rinaldi5, and M. Cocco2
|
185 |
1 Università la Sapienza, Rome, Italy
|
185 |
Fig. 1 Snapshot of the slip rate evolution during the rupture propagation of a microearthquakes (Mw = 0.71) in the context of fluid induced seismicity; for the model with Dc = 0.6mm.
|
186 |
L. Passarelli 1, S. Cesca2, L. Mizrahi3, G. Petersen2
|
187 |
M. Picozzi1,2, A.G. Iaccarino2, D. Spallarossa3
|
188 |
ML-based workflow for earthquake detection and location: preliminary results from the northern Apennines with a model trained on local waveforms
|
189 |
G. Poggiali1, S. Bagh2, L. Chiaraluce2, C. J. Marone1, Z. E. Ross3, E. Tinti1, W. Zhu4
|
189 |
1 La Sapienza Università di Roma, Rome, Italy
|
189 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
|
189 |
3 Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
|
189 |
4 University of California, Department of Earth & Planetary Science, Berkeley, CA, USA
|
189 |
Fig. 1 – Map, cross sections (1-3, width=5km) and longitudinal section (4, width=20km). Cross sections 1 and 2 clearly depict the Altotibernia Fault at depth and the shallower seismicity pertaining to the Pietralunga (1) and Gubbio (2) sequences. The lithological model on the background is from Latorre et al., 2016.
|
190 |
Cattaneo, M., Frapiccini, M., Ladina, C., Marzorati, S., & Monachesi, G. (2017). A mixed automatic-manual seismic catalog for Central-Eastern Italy: analysis of homogeneity. Annals of Geophysics.
|
191 |
Smith, Jonthan D, Zachary E Ross, Kamyar Azizzadenesheli, and Jack B Muir. 2022. “HypoSVI: Hypocentre Inversion with Stein Variational Inference and Physics Informed Neural Networks.” Geophysical Journal International 228 (1): 698–710.
|
191 |
Zhu, Weiqiang, and Gregory C. Beroza. 2019. “PhaseNet: A Deep-Neural-Network-Based Seismic Arrival-Time Picking Method.” Geophysical Journal International 216 (1): 261–73.
|
191 |
Zhu, Weiqiang, Ian W. McBrearty, S. Mostafa Mousavi, William L. Ellsworth, and Gregory C. Beroza. 2021. “Earthquake Phase Association Using a Bayesian Gaussian Mixture Model.” Journal of Geophysical Research: Solid Earth, e2021JB023249.
|
191 |
M.E. Poli, G. Monegato, A. Zanferrari, E. Falcucci, A. Marchesini, S. Grimaz, P. Malisan, E. Del Pin (2014). Seismotectonic characterization of the western Carnic pre-alpine area between Caneva and Meduno (Ne Italy, Friuli). DPC-INGV-S1 Project “Base-knowledge improvement for assessing the seismogenic potential of Italy” (D6/a2.1).
|
193 |
E. Rizzo, V. Giampaolo, F. Mucchi, P. Boldrin, G. De Martino, M.E. Poli, G. Patricelli, A. Marchesini, R. Caputo (2024). Multiscale geophysical investigation on the Budoia-Aviano thrust system (NE Italy): first results. GNGTS 2024.
|
193 |
A. Rovida, M. Locati, R. Camassi, B. Lolli, P. Gasperini, A. Antonucci (2022). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4
|
193 |
De Matteis R., Convertito V., Napolitano F., Amoroso O., Terakawa T., Capuano P.; 2021: Pore fluid pressure imaging of the Mt. Pollino region (southern Italy) from earthquake focal mechanisms. Geophysical Research Letters, 48, e2021GL094552. https://doi.org/10.1029/2021GL094552
|
196 |
Iannace A., D’ Errico M., Vitale S.; 2004: Carta geologica dell’area compresa tra Maratea, Castrovillari e Sangineto. Stampa.
|
196 |
Napolitano F., De Siena L., Gervasi A., Guerra I., Scarpa R., La Rocca M.; 2020: Scattering and absorption imaging of a highly fractured fuid-filled seismogenetic volume in a region of slow deformation. Geosci. Front. 11 (3), 989-998. doi:10.1016/j.gsf.2019.09.014
|
196 |
Napolitano F., S. Gabrielli, L. De Siena, O. Amoroso, P. Capuano (2023). Imaging overpressurised fracture networks and geological barriers hindering fluid migrations across a slow deformation seismic gap. Scientific Reports 13:19680, https://doi.org/10.1038/s41598-023-47104-w
|
196 |
Pastori M., Margheriti L., et al.; 2021: The 2011-2014 Pollino Seismic Swarm: Complex Fault Systems Imaged by 1D Re ned Location and Shear Wave Splitting Analysis at the Apennines Calabrian Arc Boundary. Front. Earth Sci. 9:618293.doi: 10.3389/feart.2021.618293
|
196 |
Middle East Technical University; 2023: Preliminary reconnaissance report on February 6, 2023, Pazarcık Mw=7.7 and Elbistan Mw=7.6, Kahramanmaraş-Türkiye Earthquakes. Edited by K.Ö. Çetin, M. Ilgaç, G. Can and E. Çakır, Report N° METU/EERC 2023-01, Earthquake Engineering Research Center.
|
201 |
Pantosti D., Azzaro R., De Martini P.M., Moro M., Nappi R. and Pucci S.; 2014: QUI INGV - EMERGEO: un gruppo di lavoro INGV per lo studio degli effetti geologici cosismici. Progettazione Sismica, 2, 137-140.
|
201 |
Reitman N.G., Briggs R.W., Barnhart W.D., Thompson J.A., DuRoss C.B., Hatem A.E., Gold R.D., Akçiz S., Koehler R.D., Mejstrik J.D., Collett C.; 2023: Fault rupture mapping of the 6 February 2023 Kahramanmaraş, Türkiye, earthquake sequence from satellite data. U.S. Geological Survey data release, https://doi.org/10.5066/P985I7U2.
|
201 |
Grannell, J., Arroucau, P., Lebedev, S., Moellhoff, M., & Bean, C. J. (2018). A Local Magnitude Scale for Ireland and its Offshore Regions, Poster Presentation, ESC General Assembly
|
209 |
Goldstein, P., and J. A. Snoke. 2005. “SAC Availability for the IRIS Community.” DMS Electronic Newsletter 7 (1): 63. www.mathworks.com.
|
209 |
Goodman, R., Jones, G. L., Kelly, J., Slowey, E., & O'Neill, N. (2004). Geothermal energy exploitation in Ireland.
|
209 |
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D and layered models (pp. 101–134). Springer Netherlands
|
209 |
Malinverno, A., & Briggs, V. A. (2004). Expanded uncertainty quantification in inverse problems: Hierarchical bayes and empirical bayes. Geophysics, 69, 1005–1016.
|
209 |
Richter, C. F. (1935). An instrumental earthquake magnitude scale*. Bulletin of the Seismological Society of America, 25, 1–32.
|
209 |
Team, T. O. D. (2017). Obspy 1.0.3.
|
209 |
E. Rizzo1,2, V. Giampaolo2, F. Mucchi1, P. Boldrin1, G. De Martino2, M.E. Poli3, G. Patricelli1, A. Marchesini3, R. Caputo1
|
210 |
1 Dipartimento di Fisica e Scienze della Terra, University of Ferrara, Italy
|
210 |
2Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale (CNR-IMAA), Tito Scalo (PZ), Italy
|
210 |
3Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Italy
|
210 |
Poli M.E., Monegato G., Zanferrari A., Falcucci E., Marchesini A., Grimaz S., Malisan P., Del Pin E. (2014) Seismotectonic characterization of the western Carnic pre-alpine area between Caneva and Meduno (Ne Italy, Friuli). DPC-INGV-S1 Project “Base-knowledge improvement for assessing the seismogenic potential of Italy”.
|
211 |
Rizzo E., Colella, A., Lapenna, V. and Piscitelli, S. (2004). “High-resolution images of the fault controlled High Agri Valley basin (Southern Italy) with deep and shallow Electrical Resistivity Tomographies”. Physics and Chemistry of the Earth, 29, 321-327.
|
211 |
Rizzo E. & Valeria Giampaolo (2019) New deep electrical resistivity tomography in the High Agri Valley basin (Basilicata, Southern Italy), Geomatics, Natural Hazards and Risk, 10:1, 197-218, DOI: 10.1080/19475705.2018.1520150
|
211 |
Poli M.E.; Patricelli G.; Falcucci E.; Gori S.; Paiero G.; Rizzo E.; Marchesini A.; Caputo R. (2024). New palaeoseismological evidence of coseismic surface rupture across the Carnic Prealpine front (NE-Italy): the Budoia-Aviano thrust system. GNGTS 2024 (in this session).
|
211 |
Preliminary results of the Non-Double-Couple seismic sources in the Southern Apennines
|
212 |
P. Roselli1, L. Scognamiglio2, F. Di Luccio1, M. Palano3, G. Ventura1
|
212 |
1Istituto Nazionale di Geofisica e Vulcanologia, Roma 1 (Roma, Italy)
|
212 |
Dreger D.S. and Helmberger D.V.; 1993: Determination of source parameters at regional distances with 3-component sparse network data. J. Geophys. Res., 98, 8107-8125.
|
213 |
Dreger D.S.; 2003: Time Domain Seismic Moment Tensor INVersion. International Handbook of Earthquake and Engineering Seismology, Volume 81(B), pp 1627.
|
213 |
Ellsworth W.L.; 2013: Injection-induced earthquakes. Science, 341(6142). doi: 10.1126/science.1225942.
|
213 |
Frohlich C.; 1994: Earthquakes with Non-Double-Couple Mechanisms. Science, 264 (5160), 804 -809. doi: 10.1126/science.264.5160.804.
|
213 |
Hrubcova P., Doubravová J., Vavrycuk V.; 2021: Non-double-couple earthquakes in 2017 swarm in Reykjanes Peninsula, SW Iceland: Sensitive indicator of volcano-tectonic movements at slow spreading rift. Earth and Planetary Science Letters. 563. 116875. 10.1016/j.epsl.2021.116875.
|
213 |
Istituto Nazionale di Geofisica e Vulcanologia (INGV); 2010-2014: Rete Sismica Nazionale (RSN). doi: https://doi.org/10.13127/SD/X0FXnH7QfY.
|
213 |
Julian B.R., Miller A.D., Foulger G.R.; 1998: Non-Double-Couple earthquakes 1: Theory. Rev. Geophys., 36, 525-549.
|
213 |
Knoff, L. and Randall M.J.; 1970: The compensated linear-vector dipole. A possible mechanism for deep earthquakes. J. Gephys. Res., 75,1957-1963.
|
213 |
Kwiatek G., Martínez-Garzón P., Bohnhoff M.; 2016: hybridMT: A Matlab/Shell environment package for seismic moment tensor inversion and refinement. Seismol. Res. Lett., doi: 10.1785/0220150251.
|
213 |
Martínez-Garzón P., Kwiatek G., Bohnoff M., Dresen G.; 2017: Volumetric components in the earthquake source related to fluid injection and stress state. Geophys. Res. Lett., 44(2), 800-809, doi:10.1002/2016GL071963.
|
213 |
Napolitano F., Amoroso O., La Rocca M., Gervasi A., Gabrielli S., Capuano P.; 2021: Crustal Structure of the Seismogenic Volume of the 2010–2014 Pollino (Italy) Seismic Sequence From 3D P- and S-Wave Tomographic Images. Front. Earth Sci., Sec. Solid Earth Geophysics, 9. doi: 10.3389/feart.2021.735340.
|
214 |
Pastori M., Margheriti L., De Gori P., Govini A., Lucente F.P., Moretti M., Marchetti A., Di Giovambattista R., Anselmi M., De Luca P., Nardi A., Piana Agostinetti N., Latorre D., Piccinini D., Passarelli L., Chiarabba C.; 2021: The 2011–2014 Pollino Seismic Swarm: Complex Fault Systems Imaged by 1D Refined Location and Shear Wave Splitting Analysis at the Apennines–Calabrian Arc Boundary. Front. Earth Sci., Sec. Solid Earth Geophysics, 9. doi: 10.3389/feart.2021.618293.
|
214 |
Passarelli L., Roessler D., Aladino G., Maccaferri F., Moretti M., Lucente F.P., Braun T., De Gori P., Margheriti L., Woith H., Sebastian H., Eleonora R., Dahm T.; 2012: Pollino Seismic Experiment (2012-2014) [Data set]. Deutsches GeoForschungsZentrum GFZ. doi: 10.14470/9N904956.
|
214 |
Roselli P., Improta L., Kwiatek G., Martínez-Garzón P., Saccorotti G., Lombardi A.M.; 2023: Source mechanisms and induced seismicity in the Val d'Agri Basin (Italy). Geophysical Journal International, 234 (3), pp 1617–1627
|
214 |
Ross A., Foulger G.R., Julian B.R.; 1996: Non-double-couple earthquake mechanisms at The Geysers geothermal area California. Geophys. Res. Lett., 23(8), 877-880. doi: 10.1029/96GL00590.
|
214 |
Saraò A., Cocina O., Privitera E., Panza G.F.; 2010: The dynamics of the 2001 Etna eruption as seen by full moment tensor analysis. Geophys. J. Int., 181(2), 951-965. doi: 10.1111/j.1365-246X.2010.04547.x.
|
214 |
Zahradník J. and Sokos E.; 2018: ISOLA code for multiple-point source modeling –review. in Moment Tensor Solutions - A Useful Tool for Seismotectonics. 1–28 (Springer Natural Hazards, 2018). doi:10.1007/978-3-319-77359-9.
|
214 |
Zoback M.D.; 2007: Reservoir Geomechanics. Cambridge University Press, 449 pp.
|
214 |
G. Rossi1, G. Bressan 2, C. Barnaba 1, A. Peresan 1
|
215 |
1 National Institute of Oceanography and Applied Geophysics –OGS, Italy
|
215 |
2 formerly National Institute of Oceanography and Applied Geophysics –OGS, Italy
|
215 |
Baiesi, M., Paczuski, M.;2004: Scale-free networks of earthquakes and aftershocks, Phys. Rev. E., 69, 066106, doi:10.1103/PhysRevE.69.066106.
|
219 |
Bragato, P.L., Comelli, P., Saraò, A., Zuliani, D., Moratto, L., Poggi, V., Rossi, G., Scaini, C., Sugan, M., Barnaba, C., Bernardi, P., Bertoni, M., Bressan, G., Compagno, A., Del Negro, E., Di Bartolomeo, P., Fabris, P., Garbin, M., Grossi, M., Magrin, A., Magrin, E., Pesaresi, D., Petrovic, B., Plasencia Linares M.P., Romanelli, M., Snidarcig, A., Tunini, L., Urban, S., Venturini, E., Parolai, S.; 2021: The OGS–Northeastern Italy Seismic and Deformation Network: Current Status and Outlook, Seismological Research Letters 92 (3), 1704–1716, doi:10.1785/0220200372
|
219 |
Bressan, G., Barnaba, C., Gentili, S., Rossi, G.;2017: Information entropy of earthquake populations in northeastern Italy and western Slovenia, Physics of the Earth and Planetary Interiors, 271, 29–46, doi: 10.1016/j.pepi.2017.08.001.
|
219 |
Bressan G., Barnaba C., Peresan A., Rossi G.; 2021: Anatomy of seismicity clustering from parametric space-time analysis. Physics of the Earth and Planetary Interiors 320, 106787, doi:10.1016/j.pepi.2021.106787.
|
219 |
Bressan, G., Barnaba, C., Magrin, A., Rossi, G.; 2018a: A study on off-fault aftershock pattern at N-Adria microplate. J. Seismol., 22, 863-881, doi:10.1007/s10950-018-9737-x.
|
219 |
Bressan, G., Barnaba, C., Bragato, P., Ponton, M., and Restivo, A.; 2018b: Revised seismotectonic model of NE Italy and W Slovenia based on focal mechanism inversion, J. Seismol., 22, 1563–1578, doi:10.1007/s10950-018-9785-2.
|
219 |
Bressan, G., Barnaba, C., Bragato, P.L., Peresan, A., Rossi, G., Urban, S.; 2019: Distretti sismici del Friuli Venezia Giulia, Bollettino di Geofisica Teorica e Applicata, 60, s.3, s1-s74, doi: 10.4430/bgta0300.
|
220 |
Saraò, A., Sugan, M., Bressan, G., Renner, G., and Restivo, A.; 2021: A focal mechanism catalogue of earthquakes that occurred in the southeastern Alps and surrounding areas from 1928–2019, Earth Syst. Sci. Data, 13, 2245–2258, doi:10.5194/essd-13-2245-2021.
|
220 |
Ponton, M.; 2010: Architettura delle Alpi Friulane. Museo Friulano di Storia Naturale 52, Udine, 80 pp.
|
220 |
Rossi, G., Ebblin, C.;1990: Space (3-D) and space-time (4-D) Analysis of aftershock sequences: the Friuli (Ne Italy) case. Boll. Geof. Teor. Appl. 22, 37-49.
|
220 |
Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., (eds); 2016: CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. doi:http//doi.org/10.6092/INGV.IT-CPTI15.
|
220 |
Telesca, L., Lapenna, V., Lovallo, M.;2004: Information entropy analysis of seismicity of Umbria-Marche region (Central Italy). Nat. Haz. Earth Syst. Sci. 4, 691–695, doi: 10.5194/nhess-4-691-2004.
|
220 |
Varini, E., Peresan, A., Zhuang, J.; 2020: Topological Comparison Between the Stochastic and the Nearest-Neighbor Earthquake Declustering Methods Through Network Analysis. J. of Geophysical Research: Solid Earth, 125 (8), e2020JB019718, doi: 10.1029/2020JB019718
|
220 |
Zaliapin, I., Ben-Zion, Y.; 2013: Earthquake clusters in southern California I: Identification and stability, J. Geophys. Res. 118, 6, 2847–2864, doi:10.1002/jgrb.50179.
|
220 |
Rheological behaviour along the Hellenic Wadati-Benioff zone
|
221 |
D. Russo1,2 and R. Caputo1,2
|
221 |
Bocchini G.M., Brustle A., Becker D., Meier T., van Keken P.E., Ruscic M., Papadopoulos G.A., Rische M. and Friederich W.; 2018: Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity. Tectonophysics, 734-735, 96-118, doi: 10.1016/j.tecto.2018.04.002.
|
223 |
Halpaap F., Rondenay S. and Ottemoller L.; 2018: Seismicity, Deformation, and Metamorphism in the Western Hellenic Subduction Zone: New Constraints from Tomography. J. Geophys. Res.: Solid Earth, 123, 3000-3026, doi: 10.1002/2017JB015154.
|
223 |
Maggini M. and Caputo R.; 2020a: Sensitivity analysis for crustal rheological profiles: examples from the Aegean Region. Ann. Geophys., 63(3), SE334, doi: 10.4401/ag-8244.
|
223 |
Maggini M. and Caputo R.; 2020b: Rheological behaviour in collisional and subducting settings: inferences for the seismotectonics of the Hellenic Region. Turk. J. Earth Sci., 29, 381–405, doi: 10.3906/yer-1909-4.
|
223 |
Maggini M. and Caputo R.; 2021: Seismological data versus rheological modelling: comparisons across the Aegean Region for improving the seismic hazard assessment. J. Struct. Geol., 145, 104312, doi: 10.1016/j.jsg.2021.104312.
|
223 |
Maggini M., Russo D. and Caputo R.; 2023: A 3D rheological model for the Aegean Region: Mechanical layering and seismotectonic implications. J. Struct. Geol., 175, 104956, 1-19, doi: 10.1016/j.jsg.2023.104956.
|
223 |
Meier T., Rische M., Endrun B., Vafidis A. and Harjes H.-P.; 2004: Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics, 383, 149 – 169, doi: 10.1016/j.tecto.2004.02.004.
|
223 |
Tracking the evolution of seismic sequences in the normal fault environment of Southern Apennines using deep catalogues
|
224 |
Bernard, P., & Zollo, A. (1989). The Irpinia (Italy) 1980 earthquake: detailed analysis of a complex normal faulting. Journal of Geophysical Research: Solid Earth, 94(B2), 1631-1647.
|
225 |
Chamberlain, C. J., Hopp, C. J., Boese, C. M., Warren‐Smith, E., Chambers, D., Chu, S. X., Kostantinos, M. & Townend, J. (2018). EQcorrscan: Repeating and near‐repeating earthquake detection and analysis in Python. Seismological Research Letters, 89(1), 173-181.
|
225 |
Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., Belardinelli, M.E. & Avouac, J. P. (2017). Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters, 44(15), 7706-7714.
|
225 |
Kaviris, G., Elias, P., Kapetanidis, V., Serpetsidaki, A., Karakonstantis, A., Plicka, V., ... & Bernard, P. (2021). The western Gulf of Corinth (Greece) 2020–2021 seismic crisis and cascading events: First results from the Corinth Rift Laboratory Network. The Seismic Record, 1(2), 85-95.
|
226 |
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications, 11(1), 3952.
|
226 |
Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767-771.
|
226 |
Rubin, A. M., Gillard, D., & Got, J. L. (1999). Streaks of microearthquakes along creeping faults. Nature, 400(6745), 635-641.
|
226 |
Rubinstein, J. L., & Beroza, G. C. (2007). Full waveform earthquake location: Application to seismic streaks on the Calaveras fault, California. Journal of Geophysical Research: Solid Earth, 112(B5).
|
226 |
Scotto di Uccio, F., Scala, A., Festa, G., Picozzi, M., & Beroza, G. C. (2023). Comparing and integrating artificial intelligence and similarity search detection techniques: application to seismic sequences in Southern Italy. Geophysical Journal International, 233(2), 861-874.
|
226 |
Sugan, M., Campanella, S., Chiaraluce, L., Michele, M., & Vuan, A. (2023). The unlocking process leading to the 2016 Central Italy seismic sequence. Geophysical Research Letters, 50(5), e2022GL101838.
|
226 |
Vuan, A., Brondi, P., Sugan, M., Chiaraluce, L., Di Stefano, R., & Michele, M. (2020). Intermittent slip along the Alto Tiberina low‐angle normal fault in central Italy. Geophysical Research Letters, 47(17), e2020GL089039.
|
226 |
Westaway, R., & Jackson, J. (1987). The earthquake of 1980 November 23 in Campania—Basilicata (southern Italy). Geophysical Journal International, 90(2), 375-443.
|
226 |
Yoon, C. E., O’Reilly, O., Bergen, K. J., & Beroza, G. C. (2015). Earthquake detection through computationally efficient similarity search. Science advances, 1(11), e1501057.
|
226 |
Yoon, C. E., Huang, Y., Ellsworth, W. L., & Beroza, G. C. (2017). Seismicity during the initial stages of the Guy‐Greenbrier, Arkansas, earthquake sequence. Journal of Geophysical Research: Solid Earth, 122(11), 9253-9274.
|
226 |
D’Agostino N.; 2014: Complete seismic release of tectonic strain and earthquake recurrence in the Apennines (Italy). Geophys. Res. Lett., 41(4), 1155-1162, DOI 10.1002/2014GL059230.
|
228 |
Déprez A., Doubre C., Masson F. and Ulrich P.; 2013: Seismic and aseismic deformation along the East African Rift System from a reanalysis of the GPS velocity field of Africa. Geophys. J. Int., 193, 1353-1369, DOI 10.1093/gji/ggt085.
|
228 |
Ferranti L., Palano M., Cannavò F., Mazzella M.E., Oldow J.S., Gueguen E., Mattia M. and Monaco C.; 2014: Rates of geodetic deformation across active faults in southern Italy. Tectonophysics, 621, 101-122, DOI 10.1016/j.tecto.2014.02.007.
|
228 |
ISIDe Working Group 2007: Italian Seismological Instrumental and Parametric Database (ISIDe). Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available online: DOI 10.13127/ISIDE (accessed on 18 December 2023).
|
228 |
Kostrov V.; 1974: Seismic moment and energy of earthquakes, and seismic Row of rock. Izv. Acad. Sci. USSR Phys. Solid Earth, 1, 23-44.
|
228 |
Masson F., Chéry J., Hatzfeld D., Martinod J., Vernant P., Tavakoli F. and Ghafory‐Ashtiani M.; 2005: Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys. J. Int., 160, 217-226, DOI 10.1111/j.1365‐246X.2004.02465.x.
|
228 |
Mazzotti S., Leonard L.J., Cassidy J.F., Rogers G.C. and Halchuk S.; 2011: Seismic hazard in western Canada from GPS strain rates versus earthquake catalog. J. Geophys. Res., 116, B12310, DOI 10.1029/2011JB008213.
|
228 |
Meletti C., Galadini F., Valensise G., Stucchi M., Basili R., Barba S., Vannucci G. and Boschi E.; 2004: Zonazione sismogenetica ZS9 [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV), DOI 10.13127/sh/zs9.
|
228 |
Pancha A., Anderson J. G. and Kreemer C.; 2006: Comparison of seismic and geodetic scalar moment rates across the Basin and Range Province. Bull. Seismol. Soc. Am., 96, 11-32, DOI 10.1785/0120040166.
|
228 |
Palano M., Imprescia P., Agnon A. and Gresta S.; 2018: An improved evaluation of the seismic/geodetic deformation‐rate ratio for the Zagros Fold‐and‐Thrust collisional belt. Geophys. J. Int., 213, 194-209, DOI 10.1093/gji/ggx524.
|
228 |
Palano M., Ursino A., Spampinato S., Sparacino F., Polonia A. and Gasperini L.; 2020: Crustal deformation, active tectonics and seismic potential in the Sicily Channel (Central Mediterranean), along the Nubia-Eurasia plate boundary. Scientific Reports, 10, 21238, DOI 10.1038/s41598-020-78063-1.
|
228 |
Sparacino F., Palano M., Peláez J.A. and Fernández J.; 2020: Geodetic deformation versus seismic crustal moment-rates: insights from the Ibero-Maghrebian region. Remote Sensing, 12(6), 952, DOI 10.3390/rs12060952.
|
228 |
Sparacino F., Galuzzi B.G., Palano M., Segou M. and Chiarabba C.; 2022: Seismic coupling for the Aegean-Anatolian region. Earth-Science Reviews, 228, 103993, DOI 10.1016/j.earscirev.2022.103993.
|
228 |
Analysis of the 1982-2016 seismicity of Aswan region (south Egypt)
|
229 |
T.A. Stabile1, E.R. Fat-HeIbary2, V. Serlenga1, S. Panebianco1,3, P. Tizzani4, R. Castaldo4, L. Telesca1, E.M. El-Amin2, H. Ahmed2
|
229 |
1 Consiglio Nazionale delle Ricerche (CNR-IMAA), Italy
|
229 |
2 National Research Institute of Astronomy and Geophysics, Egypt
|
229 |
3 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Italy
|
229 |
4 Consiglio Nazionale delle Ricerche (CNR-IREA), Italy
|
229 |
Guidoboni E.; 1984: Riti di calamità: terremoti a Ferrara nel 1570-74, Quaderni Storici 55/ a. XIX, n. 1.
|
237 |
Guidoboni E., Valensise G.; 2023: L’Italia dei Terremoti, l’Azzardo Sismico delle Città. Vol. 2, Centro-Nord. Fondazione CNI, 668 pp.
|
237 |
Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G.; 2018: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV).
|
237 |
Guidoboni E., Ferrari G., Tarabusi G., Sgattoni G., Comastri A., Mariotti D., Ciuccarelli C., Bianchi M.G., Valensise G.; 2019: CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Scientific Data 6, Article Number: 80 (2019).
|
237 |
Locati M., Camassi R., Rovida A., Ercolani E., Bernardini F., Castelli V., Caracciolo C.H., Tertulliani A., Rossi A., Azzaro R., D’amico S., Conte S., Rocchetti E.; 2016: DBMI15, the 2015 version of the Italian Macroseismic Database. Istituto Nazionale di Geofisica e Vulcanologia (INGV).
|
237 |
C. Strumia1, A. Trabattoni2, M. Supino3, M. Baillet2, D. Rivet2, G. Festa1
|
238 |
1Università di Napoli Federico II, Physics Department, Complesso Monte S. Angelo, Napoli, Italy.
|
238 |
2Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD, Géoazur.
|
238 |
3Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Roma, Italy.
|
238 |
1 National Institute of Oceanography and Applied Geophysics - OGS, Italy
|
241 |
Anikiev D., Birnie C., bin Waheed U., Alkhalifah T., Gu C., Verschuur D.J., Eisner L.; 2023. Machine learning in microseismic monitoring. Earth-Science Reviews. 239:104371. https://doi.org/10.1016/j.earscirev.2023.104371.
|
243 |
Mousavi S.M., Horton S.P., Langston C.A., Samei B.; 2016. Seismic Features and Automatic Discrimination of Deep and Shallow Induced-Microearthquakes Using Neural Network and Logistic Regression. Geophys J Int. 207(1):29-46. https://doi.org/10.1093/gji/ggw258.
|
243 |
Peruzza L., Romano M.A., Guidarelli M., Moratto L., Garbin M., Priolo E.; 2022. An unusually productive microearthquake sequence brings new insights to the buried active thrust system of Montello (Southeastern Alps, Northern Italy). Front Earth Sci. 10:1044296. https://doi.org/10.3389/feart.2022.1044296.
|
243 |
Sugan M., Peruzza L., Romano M.A., Guidarelli M., Moratto L., Sandron D., Plasencia Linares M.P., Romanelli M.; 2023. Machine learning versus manual earthquake location workflow: testing LOC-FLOW on an unusually productive microseismic sequence in northeastern Italy. Geomatics, Natural Hazards and Risk, 14:1. https://doi.org/10.1080/19475705.2023.2284120.
|
243 |
Zhang M., Liu M., Feng T., Wang R., Zhu W.; 2022. LOC-FLOW: An End-to-End Machine-Learning-Based High-Precision Earthquake Location Workflow. Seismol Res Lett. 93(5):2426-2438. https://doi.org/10.1785/0220220019.
|
243 |
Zhu W., Beroza G.C.; 2018. PhaseNet: A deep-neural-network based seismic arrival-time picking method. Geophys J Int. 216(1): 261–273. https://doi.org/10.1093/gji/ggy423.
|
243 |
SUPERSTUDIES: an approach for integrating macroseismic datasets of different nature
|
244 |
A. Tertulliani1, A. Antonucci2, F. Bernardini3, V. Castelli3, E. Ercolani3, L. Graziani1, A. Maramai1 , M. Orlando1, A. Rossi1, T. Tuvè4
|
244 |
I Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
|
244 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Milano, Italy
|
244 |
3 Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
|
244 |
4 Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy
|
244 |
Bernardini F., Camassi R., Castelli V., Ercolani E., Frapiccini M., Vannucci G., Giovani L., Tertulliani A.; 2003: Rilievo macrosismico degli effetti prodotti dalla sequenza sismica iniziata il 14 settembre 2003 (Appennino Bolognese). Rapporto tecnico QUEST, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, 10 pp. https://doi.org/10.13127/QUEST/20030914
|
246 |
Gasparini C., Conte S., Vannucci C. (ed); 2011: Bollettino macrosismico 2001-2005. Istituto Nazionale di Geofisica e Vulcanologia, Roma. CD-ROM
|
246 |
Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G.; 2018: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). doi: https://doi.org/10.6092/ingv.it-cfti5
|
246 |
Locati, M., R. Camassi, A. Rovida, E. Ercolani, F. Bernardini, V., Castelli, C. H. Caracciolo, A. Tertulliani, A. Rossi, R. Azzaro, et al.; 2019: Database macrosismico Italiano (DBMI15), versione 2.0, Istituto Nazionale di Geofisica e Vulcanologia (INGV), doi: 10.13127/DBMI/DBMI15.2 .
|
246 |
Rovida A., Locati M., Antonucci A., Camassi R. (a cura di); 2017: Archivio Storico Macrosismico Italiano (ASMI). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/asmi
|
246 |
Rovida, A., M. Locati, R. Camassi, B. Lolli, and P. Gasperini; 2020: The Italian earthquake catalogue CPTI15, Bull. Earthq. Eng. 18, 2953–2984, doi: 10.1007/s10518-020-00818-y
|
246 |
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P., Antonucci A.; 2022: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4
|
246 |
Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G.; 2018: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). doi: https://doi.org/10.6092/ingv.it-cfti5
|
247 |
Rovida, A., M. Locati, R. Camassi, B. Lolli, and P. Gasperini; 2020: The Italian earthquake catalogue CPTI15, Bull. Earthq. Eng. 18, 2953–2984, doi: 10.1007/s10518-020-00818-y
|
247 |
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P., Antonucci A.; 2022: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4
|
247 |
Recent activity of the Stradella fault (Emilia Arc, northern Italy) by a multi-scale approach
|
248 |
Acknowledgments
|
249 |
Integrated analysis of geophysical data: a case study from Central Italy
|
250 |
M.M. Tiberti1, F.E. Maesano1, M. Buttinelli1, P. De Gori1, F. Ferri2, L. Minelli1, M. Di Nezza1, C. D'Ambrogi2
|
250 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
|
250 |
2Istituto Superiore per la Protezione e la Ricerca Ambientale, Servizio Geologico d’Italia, Rome, Italy
|
250 |
G. Toffol1, G. Pennacchioni1, L. Menegon2, D. Wallis3, M. Faccenda1, A. Camacho4, M. Bestmann5
|
251 |
1 Department of Geosciences, University of Padova, Padva, Italy
|
251 |
2 Department of Geosciences, University of Oslo, Oslo, Norway
|
251 |
3 Department of Earth Sciences, University of Cambridge, Cambridge, UK
|
251 |
4 Department of Geological Sciences, University of Manitoba, Winnipeg, Canada
|
251 |
5 Department of Geology, University of Vienna, Wien, Austria
|
251 |
G. Valensise1, F. Donda2, A. Tamaro2, S. Parolai3
|
252 |
1 INGV, Rome, Italy
|
252 |
2 OGS, Trieste, Italy
|
252 |
3 University of Trieste, Italy
|
252 |
References
|
254 |
Bonini L., Toscani G., Seno S.; 2014: Three-dimensional segmentation and different rupture behaviour during the 2012 Emilia seismic sequence (Northern Italy). Tectonophysics, 630, 33–42, DOI: 10.1016/j.tecto.2014.05.006.
|
254 |
Carafa M. M. C., Valensise G., Bird P.; 2017: Assessing the seismic coupling of shallow continental faults and its impact on seismic hazard estimates: a case-study from Italy. Geophys. J. Int., 209(1), 32–47, DOI: 10.1093/gji/ggx002.
|
254 |
DISS Working Group; 2021: Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia (INGV), DOI: 10.13127/diss3.3.0.
|
254 |
Kanamori, H. Great earthquakes at island arcs and the lithosphere. Tectonophysics, 12, 187–198 (1971).
|
254 |
Mucciarelli M., Donda F., Valensise G.; 2015: Earthquakes and depleted gas reservoirs: which comes first? Natural Hazards and Earth System Sciences, 15(10), 2,201-2,208, DOI: 10.5194/nhess- 15-2201-2015.
|
254 |
Nissen E., Tatar M., Jackson J. A., Allen M. B.; 2011: New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophys. J. Int., 186, 928–944, DOI: 10.1111/j.1365246X.2011.05119.x.
|
254 |
Valensise G., Donda F., Tamaro A., Parolai S.; 2022: Gas fields and large shallow seismogenic reverse faults are anticorrelated. Scientific Reports, 12(1), 1,827, DOI: 10.1038/s41598- 022-05732-8.
|
254 |
Investigating the Influence of Coulomb Stress Transfer in the Activity of the Central Apennine Fault System (CAFS) Over the Last Millennium
|
255 |
G. Valentini1,2., T. Volatili1, P. Galli3,4, E. Tondi1,2
|
255 |
Chiarabba C. and De Gori P.; 2016: The seismogenic thickness in Italy: constraints on potential magnitude and seismic hazard. Terra Nova, 28(6), 402-408.
|
261 |
Galderisi A. and Galli P.; 2020: Coulomb stress transfer between parallel faults. The case of Norcia and Mt Vettore normal faults (Italy, 2016 Mw 6.6 earthquake). Results in Geophysical Sciences, 1, 100003.
|
261 |
Galli P., Galderisi A., Messina P. and Peronace E.; 2022: The Gran Sasso fault system: Paleoseismological constraints on the catastrophic 1349 earthquake in Central Italy. Tectonophysics, 822, 229156.
|
261 |
Gasparini C., Iannaccone G. and Scarpa R.; 1985: Fault-plane solutions and seismicity of the Italian peninsula. Tectonophysics 117, 59–78.
|
261 |
Gupta A. and Scholz C. H.; 2000: A model of normal fault interaction based on observations and theory. Journal of structural Geology, 22(7), 865-879.
|
261 |
ISIDe Working Group; 2007: Italian Seismological Instrumental and Parametric Database (ISIDe). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ISIDE
|
261 |
King G. C., Stein R. S. and Lin, J.; 1994: Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
|
261 |
Lin J. and Stein R. S.; 2004: Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults. Journal of Geophysical Research: Solid Earth, 109(B2).
|
261 |
Mildon Z. K., Toda S., Faure Walker J. P. and Roberts G. P.; 2016: Evaluating models of Coulomb stress transfer: Is variable fault geometry important?. Geophysical Research Letters, 43(24), 12-407.
|
261 |
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. and Antonucci A.; 2022: Catalogo Parametrico dei Terremoti Italiani CPTI15, versione 4.0.
|
261 |
Toda S., Stein R. S., Richards‐Dinger K. and Bozkurt S. B.; 2005: Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5).
|
261 |
Valentini G., Volatili T., Galli P. and Tondi E.; 2023: New methodological approach in the evaluation of faults interaction: insights from the central Apennine fault system. Bulletin of Geophysics and Oceanography.
|
261 |
Chamberlain C. J., Hopp C. J., Boese C. M., Warren‐Smith E. , Chambers D., Chu S. X., Michailos K., Townend J. (2018). EQcorrscan: Repeating and Near‐Repeating Earthquake Detection and Analysis in Python. Seismological Research Letters 2017; 89 (1): 173–181. https://doi.org/10.1785/0220170151
|
263 |
Zhu, W., & Beroza G. B. (2018). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International, 216(1), 261-273.
|
263 |
Istituto Nazionale di Geofisica e Vulcanologia (Rome, Italy)
|
264 |
Amoroso O., Russo G., De Landro G., Zollo A., Garambois S., Mazzoli S., Parente M., Virieux J.; 2017: From velocity and attenuation tomography to rock physical modeling: Inferences on fluid-driven earthquake processes at the Irpinia fault system in southern Italy. Geophys. Res. Lett., 44, 6752–6760.
|
266 |
Chiodini G., Cardellini C., Di Luccio F., Selva J., Frondini F., Caliro S., Rosiello A., Beddini G., Ventura G.; 2020: Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Sci. Adv., 6, eabc2938.
|
266 |
Chiodini G.; 2014: Gas emissions and related hazard in Italy. Mem. Descr. Carta Geol. d’It., XCVI, 189-194. In Italian
|
266 |
D’Agostino N., Silverii F., Amoroso O., Convertito V., Fiorillo F., Ventafridda G., Zollo A.; 2018: Crustal deformation and seismicity modulated by groundwater recharge of karst aquifers. Geophys. Res. Lett., 45, 12, 253–262.
|
266 |
Di Luccio F., Palano M., Chiodini G., Cucci L., Piromallo C., Sparacino F., Ventura G., Improta L. et alii; 2022: Geodynamics, geophysical and geochemical observations, and the role of CO2 degassing in the Apennines. Earth-Science Reviews, 234, 104236.
|
266 |
Fiorillo F., Guadagno F.M.; 2010: Karst spring discharges analysis in relation to drought periods, using SPI. Water Resource Manage, 24:1867-1884.
|
266 |
Improta L., Bonagura M., Capuano P., Iannaccone G.; 2003: An integrated geophysical investigation of the upper crust in the epicentral area of the 1980, Ms=6.9, Irpinia earthquake (Southern Italy). Tectonophysics, 361, 139-169.
|
266 |
Improta L., Corciulo M. (2006): Controlled source nonlinear tomography: A powerful tool to constrain tectonic models of the Southern Apennines orogenic wedge, Italy. Geology, 34 (11): 941–944.
|
266 |
Minissale A.; 2004: Origin, transport and discharge of CO2 in central Italy. Earth Sci. Rev. 66, 89–141.
|
266 |
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P.; 2020: The Italian earthquake catalogue CPTI15. Bulletin of Earthquake Engineering, 18(7), 2953-2984.
|
266 |
Rovida A., Locati M., Camassi R., Lolli, B., Gasperini P., Antonucci A.; 2022: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV).
|
266 |
Vannoli P., Martinelli G., Valensise G.; 2021: The Seismotectonic Significance of Geofluids in Italy. Front. Earth Sci., 9:579390.
|
266 |
VIDEPI website, available at: https://www.videpi.com/videpi/videpi.asp. Accessed on 15 December 2023
|
266 |
Zhang J.; 2011: Pore pressure prediction from well logs: methods, modifications, and new approaches. Earth-Science Reviews, 108, 50-67.
|
267 |
Akinci, A., Galadini, F., Pantosti, D., Petersen, M., Malagnini, L., & Perkins, D. (2009). Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the Central Apennines, Italy. Bulletin of the Seismological Society of America, 99(2A), 585-610.
|
272 |
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., ... & Boschi, E. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy's earthquake geology. Tectonophysics, 453(1-4), 20-43.
|
272 |
Bordoni, P., Gori, S., Akinci, A., Visini, F., Sgobba, S., Pacor, F., ... & Doglioni, C. (2023). A site-specific earthquake ground response analysis using a fault-based approach and nonlinear modeling: The Case Pente site (Sulmona, Italy). Engineering Geology, 314, 106970.
|
272 |
Galadini, F., & Galli, P. (2000). Active tectonics in the central Apennines (Italy)–input data for seismic hazard assessment. Natural Hazards, 22, 225-268.
|
272 |
Galli, P., Giaccio, B., Peronace, E., & Messina, P. (2015). Holocene paleoearthquakes and early–late pleistocene slip rate on the Sulmona fault (central Apeninnes, Italy). Bulletin of the Seismological Society of America, Vol. 105, No. 1, pp. 1–13, February 2015, doi: 10.1785/0120140029
|
272 |
Galli, P., & Pallone, F. (2019). Reviewing the intensity distribution of the 1933 earthquake (Maiella, Central Italy). Clues on the seismogenic fault. Alpine and Mediterranean Quaternary, 32(2), 93-100.
|
272 |
Gironelli, V., Volatili, T., Luzi, L., Brunelli, G., Zambrano, M., & Tondi, E. (2023). Ground motion simulations of historical earthquakes: the case study of the Fabriano (1741, Mw= 6.1) and Camerino (1799, Mw= 6.1) earthquakes in central Italy. Bulletin of Earthquake Engineering, 21(13), 5809-5830.
|
272 |
Gori, S., Giaccio, B., Galadini, F., Falcucci, E., Messina, P., Sposato, A., & Dramis, F. (2011). Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy). International journal of earth sciences, 100, 157-171.
|
272 |
Locati M., Camassi R., Rovida A., Ercolani E., Bernardini F., Castelli V., Caracciolo C.H., Tertulliani A., Rossi A., Azzaro R., D’Amico S., Antonucci A. (2022). Database Macrosismico Italiano (DBMI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV).
|
272 |
Mori, F., Mendicelli, A., Moscatelli, M., Romagnoli, G., Peronace, E., & Naso, G. (2020). A new Vs30 map for Italy based on the seismic microzonation dataset. Engineering Geology, 275, 105745.
|
272 |
Patacca, E., Scandone, P., Di Luzio, E., Cavinato, G. P., & Parotto, M. (2008). Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics, 27(3).
|
272 |
Petricca, P., Barba, S., Carminati, E., Doglioni, C., & Riguzzi, F. (2015). Graviquakes in italy. Tectonophysics, 656, 202-214.
|
272 |
Pomposo, G., & Pizzi, A. (2009). Evidenze di tettonica recente ed attiva nel settore esterno sepolto dell'Appennino centrale abruzzese. In Rendiconti online della Società Geologica Italiana (Vol. 5, pp. 176-178). Società Geologica Italiana.
|
273 |
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P., Antonucci A. (2022). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4
|
273 |
Mai, P. Martin; Aspiotis, Theodoros; Aquib, Tariq Anwar; Cano, Eduardo Valero; Castro‐Cruz, David; Espindola‐Carmona, Armando; Li, Bo; Li, Xing; Liu, Jihong; Matrau, Rémi; Nobile, Adriano; Palgunadi, Kadek Hendrawan; Ribot, Matthieu; Parisi, Laura; Suhendi, Cahli; Tang, Yuxiang; Yalcin, Bora; Klinger, Yann; Jónsson, Sigurjón (2023). "The Destructive Earthquake Doublet of 6 February 2023 in South‐Central Türkiye and Northwestern Syria: Initial Observations and Analyses". The Seismic Record. 3 (2): 105–115. doi:10.1785/0320230007
|
276 |
Reitman, Nadine G, Richard W. Briggs, William D. Barnhart, Jessica A. Thompson Jobe, Christopher B. DuRoss, Alexandra E. Hatem, Ryan D. Gold, John D. Mejstrik, and Sinan Akçiz (2023) Preliminary fault rupture mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes. DOI: https://doi.org/10.5066/P985I7U2
|
276 |
References
|
279 |
Ellsworth W. L.; 2013: Injection-induced earthquakes. Science, 341(6142), 1225942.
|
279 |
Neely J. S., Salditch L., Spencer B. D. and Stein S.; 2023: A More Realistic Earthquake Probability Model Using Long‐Term Fault Memory. Bull. Seismol. Soc. Am., 113(2), 843-855.
|
279 |
Rice J. R. and Cocco M.; 2007: Seismic fault rheology and earthquake dynamics. Tectonic faults: Agents of change on a dynamic earth, 99-137.
|
279 |
Ross Z. E., Hauksson E. and Ben-Zion, Y.; 2017: Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Sci. Adv., 3(3), e1601946.
|
279 |
Tan Y. J., Waldhauser F., Ellsworth W. L., Zhang M., Zhu W., Michele M., ... and Segou M.; 2021: Machine-learning-based high-resolution earthquake catalog reveals how complex fault structures were activated during the 2016–2017 Central Italy sequence. The Seismic Record, 1(1), 11-19.
|
279 |
Zaccagnino D. and Doglioni C.; 2022: The impact of faulting complexity and type on earthquake rupture dynamics. Commun. Earth Environ., 3(1), 258.
|
279 |
The 1783 Calabria earthquake sequence: a review of the coseismic effects on the natural environment
|
280 |
C. Zei1,2, C. Ciuccarelli1, M.G. Bianchi1, G. Tarabusi1, D. Mariotti1
|
280 |
Bianchi M.G., Tarabusi G., Ciuccarelli C., Maresci M., Baranello S., Taccone R.C., Ferrari G.; 2022: CFTIvisual, Atlante delle fonti visive dei terremoti italiani. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/cfti/visual
|
282 |
Boschi E., Guidoboni E., Ferrari G., Mariotti D., Valensise G., Gasperini P. (eds); 200: Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997. Annali di Geofisica, 43, 4, 609-868.
|
282 |
Boschi E., Ferrari G., Gasperini P., Guidoboni E., Smriglio G., Valensise G. (eds); 1995: Catalogo dei forti terremoti in Italia dal 461 a.C. al 1980. ING-SGA, Bologna, 970 pp.
|
282 |
Boschi E., Guidoboni E., Ferrari G., Valensise G. and Gasperini P. (eds.); 1997: Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990, vol. 2. ING-SGA, Bologna, 644 pp.
|
282 |
Cucci L.; 2022: NW-dipping versus SE-dipping causative faults of the 1783 M7.1 Southern Calabria (Italy) earthquake: The contribution from the analysis of the coseismic hydrological changes. Front. Earth Sci. 10:987731. doi:10.3389/feart.2022.987731
|
282 |
Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G.; 2018: CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.6092/ingv.it-cfti5
|
282 |
Guidoboni E., Ferrari G., Tarabusi G., Sgattoni G., Comastri A., Mariotti D., Ciuccarelli C., Bianchi M.G., Valensise G.; 2019: CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area, Scientific Data 6, Article number: 80. https://doi.org/10.1038/s41597-019-0091-9
|
282 |
Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA); IFFI, Inventario dei Fenomeni Franosi in Italia. https://www.progettoiffi.isprambiente.it/
|
282 |
Sarconi M.; 1784: Istoria de’ fenomeni del tremoto avvenuto nelle Calabrie, e nel Valdemone nell’anno 1783 posta in luce dalla Reale Accademia delle Scienze e delle Belle Lettere di Napoli, Napoli.
|
282 |
Tarabusi G., Ferrari G., Ciuccarelli C., Bianchi M.G., Sgattoni G., Comastri A., Mariotti D., Valensise G., Guidoboni E.; 2020: CFTILab, Laboratorio Avanzato di Sismologia Storica. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CFTI/CFTILAB
|
282 |
Vivenzio G.; 1783: Istoria e teoria de’ tremuoti in generale ed in particolare di quelli della Calabria, e di Messina del MDCCLXXXIII, Napoli.
|
282 |
Zei C., Tarabusi G., Ciuccarelli C., Mariotti D., Baranello S., Sgattoni G., Burrato P., CFTI working Group; 2023: A new database of historical earthquake-induced landslides in Italy, 41st National Conference of the GNGTS, Bologna https://gngts.ogs.it/atti/GNGTS2023/HTML/212/
|
283 |
12_Abstract_GNGTS2024.pdf
|
289 |
Imaging the North-South deformation through the application of potential theory to InSAR measurements
|
289 |
Barone1, P. Mastro1, A. Pepe1, M. Fedi2, P. Tizzani1, R. Castaldo1
|
289 |
1 Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Consiglio Nazionale delle Ricerche (CNR), Napoli, Italia.
|
289 |
2 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università degli Studi di Napoli Federico II, Napoli, Italia.
|
289 |
Synthetic Aperture Radar Interferometry (InSAR) is a well-established technique for monitoring and modeling the ground deformation field in volcanic areas and geothermal fields. Specifically, when SAR images are acquired along both the ascending and descending satellites orbits, the retrieval of the East-West (E-W) and vertical components of the related three-dimensional (3D) ground deformation field is conceivable; the North-South (N-S) one is usually not available and different techniques have been proposed to solve this task. However, the resolutions and accuracies of these retrieved measurements are not always satisfactory.
|
289 |
Here, we show a new approach for the retrieval of the N-S component and the reconstruction of the 3D ground deformation field in volcanic frameworks. The proposed methodology is based on the theory of the potential functions and the integral transforms of potential fields. We test our workflow on synthetic deformation datasets computed according to the commonly used analytic volcanic deformation sources (i.e., Mogi’s, Okada’s and Yang’s models). The results show that the proposed technique allows the retrieval of the N-S deformation with negligible errors with respect to the expected one.
|
289 |
We then consider this approach to reconstruct the 3D ground deformation field that occurred at Sierra Negra volcano (Galapagos Islands, Ecuador) during the 2017 – 2018.5 unrest, which has led to the eruption. The comparison with GNSS data shows that we are able to image the pre-eruptive N-S deformation for this volcano with a mean error of about 5%, which is a surprising result for this kind of application.
|
289 |
The next step of this study is the modeling of the volcanic deformation sources through the use of the retrieved 3D ground deformation field and showing the impact in the framework of the ambiguity solving.
|
289 |
Introduction
|
290 |
Overview of the methods
|
292 |
Results
|
292 |
Concluding remarks
|
294 |
Acknowledgements
|
295 |
References
|
295 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Arezzo, Italy
|
296 |
2 Università degli Studi “Roma Tre”, Roma, Italy
|
296 |
3 Istituto Nazionale di Geofisica e Vulcanologia, Sezione ONT, Roma, Italy
|
296 |
4 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Roma, Italy
|
296 |
5 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Milazzo, Italy
|
296 |
Fig. 1 – Example of an earthquake and rumble located on 22/07/2020 at 19:36 in the area of Montecassino (FR). Note the occurrence of three small seismic events (coloured traces) prior to the infrasound signal (black).
|
297 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli, Osservatorio Vesuviano, Napoli, Italy
|
313 |
Trans-dimensional Mt. Etna P-wave anisotropic imaging
|
315 |
G. Del Piccolo1, R. Lo Bue1, B.P. VanderBeek1, M. Faccenda1, O. Cocina2, M. Firetto Carlino2, E. Giampiccolo2, A. Morelli3, J.S. Byrnes4
|
315 |
1 Dipartimento di Geoscienze, Università degli Studi di Padova
|
315 |
Nonlinear convective motion of the asthenosphere and the lithosphere melting. A model for the birth of a volcano
|
328 |
1 Department of Mathematics and Physics, Università della Campania "Luigi Vanvitelli", Caserta, Italy.
|
328 |
1 National Institute of Geophysics and Volcanology – Palermo (INGV, Italy)
|
349 |
Fig. 1 – Maps showing the position of Panarea Island in Southeastern Tyrrhenian Sea (red marker in left panel) and the position of the investigated vent (cyan marker in right panel).
|
350 |
Fig. 2 – Power Spectral Density (PSD) (panel a) and Pressure Power Spectrum (panel b) of 04/10/2022.
|
351 |
Fig. 3 – Charts showing the Spectrograms recorded on 04/10/2022 on which the inversion range is indicated (red lines).
|
351 |
b value tomography at Campi Flegrei: enlightening different rheological behaviour in volcanic areas
|
357 |
2 Department of Mathematics and Physics, Università della Campania "Luigi Vanvitelli", Caserta, Italy.
|
357 |
13_Abstract_GNGTS2024.pdf
|
365 |
1 Department of Physics, University of Salerno, Fisciano, Italy
|
365 |
Amoruso A. and Crescentini L.; 2022: Clues of Ongoing Deep Magma Inflation at Campi Flegrei Caldera (Italy) from Empirical Orthogonal Function Analysis of SAR Data. Remote Sens., 14, 5698, DOI 10.3390/rs14225698.
|
365 |
C. Braitenberg
|
366 |
Department of Mathematics, Informatics and Geosciences (MIGe), University of Trieste, Trieste, Italy,
|
366 |
1 Università degli Studi di Catania, Catania, Italy
|
368 |
2 Università degli Studi di Ferrara, Ferrara, Italy
|
368 |
3 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS, Trieste, Italy
|
368 |
Fig. 1 – IGM95 points reoccupied during the 2023 campaigns
|
368 |
Fig. 2 – Velocity field obtained by IGM95 points.
|
370 |
Fig. 1 - Main working screen of the open-source SAR-TOOL software. In particular, the figure shows a work session related to the interactive selection and addition of input data required by the SISTEM algorithm, featuring a terminal on the right showing both the parameters entered and those calculated by the algorithm.
|
380 |
Fig. 2 - Examples of products obtained through SAR-TOOL. (a) Modelling of a synthetic DEM and a spherical Mogi source located at a depth of 2000 metres above sea level; (b) Visualisation of a phase interferogram relative to a ground deformation period at Etna volcano (Italy); (c) Output of the displacements generated by a spherical Mogi source and calculated by the SISTEM algorithm through interaction with 60 synthetic GPS points arranged in a random geometry within the grid.
|
381 |
Discontinuities affect the Earth’s dynamics, yet the Earth is often represented in geodynamical models as a continuous material. The challenge of representing discontinuities in numerical models has been addressed in several ways in literature. The split node method, originally introduced by Jungels (1973) and Jungels and Frazier (1973) for elastic rheology and then modified by Melosh and Raefsky (1981) to simplify its implementation, allows the introduction of discontinuity into a finite element model by imposing an a-priori slip at a designated node, where the displacement depends on the element which the node is referred to. Originally, this method requires that the discontinuity’s geometry and slip are pre-established.
|
386 |
Jungels P.H.; 1973: Models of tectonic processes associated with earthquakes. PhD thesis.
|
387 |
Jungels P.H., Frazier G.A. Frazier; 1973: Finite element analysis of the residual displacements for an earthquake rupture: source parameters for the San Fernando earthquake. Journal of Geophysical Research.
|
387 |
Marotta A.M., Restelli F., Bollino A., Regorda A., Sabadini R.; 2020: The static and time-dependent signature of ocean-continent and ocean-ocean subduction: The case studies of Sumatra and Mariana complexes. Geophysical Journal International.
|
387 |
Melosh H.J., Raefsky A.; 1981: A simple and efficient method for introducing faults into finite element computations. Bulletin of the Seismological Society of America.
|
387 |
Altamimi Z., Métivier L., Rebischung P., Rouby H., Collilieux X.; 2017: ITRF2014 plate motion model, Geophys. J. Int., 209, 3, doi:10.1093/gji/ggx136.
|
390 |
Beavan J., Haines J.; 2001: Contemporary horizontal velocity and strain rate fields on the Pacific-Australian plate boundary zone through New Zealand. J. Geophys. Res., 106(B1), doi:10.1029/2000JB900302.
|
390 |
Devoti R., D’Agostino N., Serpelloni E., Pietrantonio G., Riguzzi F., Avallone A., Cavaliere A., Cheloni D., Cecere G., D’Ambrosio C., Falco L., Selvaggi G., Mètois M., Esposito A., Sepe V., Galvani A., Anzidei M.; 2017: A Combined Velocity Field of the Mediterranean Region. Annals of Geophysics, 60(2), doi:10.4401/ag-7059.
|
390 |
Shen-Tu B., Holt W.E., Haines J.; 1998: Contemporary kinematics of the western United States determined from earthquake moment tensors, very long baseline interferometry, and GPS observations. J. Geophys. Res., 103(B8), doi:10.1029/98JB01669.
|
390 |
1 Dipartimento di Fisica e Astronomia (DIFA), Alma Mater Studiorum Università di Bologna, Italy
|
391 |
2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italy
|
391 |
Burov, E. B., Watts, A. B; 2006. The long-term strength of continental lithosphere: "jelly sandwich" or" crème brûlée"?. Geological Society of America Today, 16(1), 4.
|
394 |
Cloetingh, S., Burov, E. B; 1996. Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophysical Journal International, 124(3), 695-723.
|
394 |
Cloetingh, S., Ziegler, P. A., Beekman, F., Andriessen, P. A. M., Hardebol, N., Dezes, P.; 2005. Intraplate deformation and 3D rheological structure of the Rhine Rift System and adjacent areas of the northern Alpine foreland. International Journal of Earth Sciences, 94, 758-778.
|
394 |
Evans, B.; 2005. Creep constitutive laws for rocks with evolving structure. Geol Soc Lond Spec Publ 245 (1): 329–346.
|
394 |
Handy, M. R., Brun, J. P.; 2004. Seismicity, structure and strength of the continental lithosphere. Earth and Planetary Science Letters, 223(3-4), 427-441.
|
394 |
Hirth, G., Kohlstedf, D.; 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Geophysical monograph-american geophysical union, 138, 83-106.
|
394 |
Jackson, J. A; 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. Geological Society of America Today, 12, 4-10.
|
394 |
Le Pichon, X., Francheteau, J., Bonnin, J., X.; 2013. Plate tectonics (Vol. 6). Elsevier.
|
394 |
Liu, L., Zoback, M. D.; 1997. Lithospheric strength and intraplate seismicity in the New Madrid seismic zone. Tectonics, 16(4), 585-595.
|
394 |
Shen, Z. K., Jackson, D. D., Ge, B. X; 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. Journal of Geophysical Research: Solid Earth, 101(B12), 27957-27980.
|
394 |
Shen, Z. K., Wang, M., Zeng, Y., Wang, F; 2015. Optimal interpolation of spatially discretized geodetic data. Bulletin of the Seismological Society of America, 105(4), 2117-2127.
|
395 |
Tesauro, M., Kaban, M. K., Cloetingh, S. A; 2009. A new thermal and rheological model of the European lithosphere. Tectonophysics, 476(3-4), 478-495.
|
395 |
Thatcher, W.; 1983. Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. Journal of Geophysical Research: Solid Earth, 88(B7), 5893-5902.
|
395 |
Thatcher, W.; 2009. How the continents deform: The evidence from tectonic geodesy. Annual Review of Earth and Planetary Sciences, 37, 237-262.
|
395 |
Tullis, J.; 2002. Deformation of granitic rocks: experimental studies and natural examples. Reviews in Mineralogy and Geochemistry, 51(1), 51-95.
|
395 |
Twiss, R. J.; 1977. Theory and applicability of a recrystallized grain size paleopiezometer. Stress in the Earth, 227-244.
|
395 |
Wessel P., Smith W. H.; 1998: New, improved version of Generic Mapping Tools released, Eos, Transactions American Geophysical Union, 79(47), 579-579.
|
395 |
Zhang, S., Karato, S. I.; 1995. Lattice preferred orientation of olivine in simple shear deformation and the flow geometry of the upper mantle of the Earth. Nature, 375, 774-777.
|
395 |
Zang, S. X., Wei, R. Q., Ning, J. Y.; 2007. Effect of brittle fracture on the rheological structure of the lithosphere and its application in the Ordos. Tectonophysics, 429(3-4), 267-285.
|
395 |
MCMTpy waveform inversion package: testing a new method for moment tensor estimation
|
400 |
T. Mancuso1, C. Totaro1, B. Orecchio1
|
400 |
1 Department of Mathematical and Computer Sciences, Physical and Earth Sciences (University of Messina, Italy)
|
400 |
A. M. Marotta1, R. Barzaghi2, A. Bollino1, A. Regorda1, R. Sabadini1
|
402 |
1 Department of Earth Sciences Ardito Desio, Universit`a degli Studi di Milano, Milano, Italy
|
402 |
Brockmann, J.M., Schubert, T., Schuh, W.D., 2021. An improved model of the Earth’s static gravity field solely derived from reprocessed GOCE data. Surv. Geophys. 42, 277–316. https://doi.org/10.1007/s10712-020-09626-0.
|
403 |
Marotta, A.M., Barzaghi, R., 2017. A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band. J. Geod. 91, 1207–1224. https://doi.org/10.1007/s00190- 017-1018-x. Surname N.; 20xx: Title. Journal.
|
403 |
Physical models for the Solid Earth and integration between modeling and data of different nature
|
404 |
1 INGV, Dept.Palermo, Palermo, Italy
|
404 |
2 CNR-IGG, Pisa, Italy
|
404 |
1. Department of Mathematics, Informatics and Geosciences (MIGe), University of Trieste, Trieste, Italy,
|
405 |
Beamish, D., Busby, J. (2016) The Cornubian geothermal province: heat production and flow in SW England: estimates from boreholes and airborne gamma-ray measurements. Geotherm Energy 4, 4. https://doi.org/10.1186/s40517-016-0046-8
|
406 |
Maurizio, G., Braitenberg, C., Sampietro, D., & Capponi, M. (2023). A new lithospheric density and magnetic susceptibility model of Iran, starting from high-resolution seismic tomography. Journal of Geophysical Research: Solid Earth, 128, e2023JB027383. https://doi.org/10.1029/2023JB027383
|
406 |
Moorkamp, M., Heincke, B., Jegen, M., Roberts, A. W., Hobbs, R. W. (2011). A framework for 3-D joint inversion of MT, gravity and seismic refraction data, Geophysical Journal International, Volume 184, Issue 1, Pages 477–493. https://doi.org/10.1111/j.1365-246X.2010.04856.x
|
406 |
Moorkamp, M. (2022). Deciphering the state of the lower crust and upper mantle with multi-physics inversion. Geophysical Research Letters, 49, e2021GL096336. https://doi.org/10.1029/2021GL096336
|
406 |
Reinecker, J., Gutmanis, J., Foxford, A., Cotton, L., Dalby, C., Law, R. (2021). Geothermal exploration and reservoir modelling of the United Downs deep geothermal project, Cornwall (UK), Geothermics, Volume 97, 102226, ISSN 0375-6505. https://doi.org/10.1016/j.geothermics.2021.102226.
|
406 |
Romer, R. L., Kroner, U. (2016). Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting, Gondwana Research, Volume 31, Pages 60-95, ISSN 1342-937X. https://doi.org/10.1016/j.gr.2015.11.002.
|
406 |
Sampietro, D., Capponi, M., & Maurizio, G. (2022). 3D Bayesian inversion of potential fields: The Quebec Oka carbonatite complex case study. Geosciences, 12(10), 382. https://doi.org/10.3390/geosciences12100382
|
406 |
Simons, B., Shail, R. K., Andersen, J. C. Ø. (2016). The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England, Lithos, Volume 260, Pages 76-94, ISSN 0024-4937. https://doi.org/10.1016/j.lithos.2016.05.010.
|
406 |
Simons, B., Andersen, J. C. Ø., Shail, R. K., Jenner, F. E. (2017). Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation, Lithos, Volumes 278–281, Pages 491-512, ISSN 0024-4937. https://doi.org/10.1016/j.lithos.2017.02.007.
|
406 |
Willis-Richards, J., Jackson, N. J. (1989). Evolution of the Cornubian ore field, Southwest England; Part I, Batholith modeling and ore distribution. Economic Geology; 84 (5): 1078–1100. https://doi.org/10.2113/gsecongeo.84.5.1078
|
406 |
Monna, S., Montuori, C., Frugoni, F., Piromallo, C., Vinnik, L., & AlpArray Working Group (2022). Moho and LAB across the Western Alps (Europe) from P and S receiver function analysis. Journal of Geophysical Research: Solid Earth, 127, e2022JB025141. https://doi.org/10.1029/2022JB025141
|
409 |
Monna, S., Montuori, C., Piromallo, C., & Vinnik, L. (2019). Mantle structure in the central Mediterranean region from P and S receiver functions. Geochemistry, Geophysics, Geosystems, 20(10), 4545-4566. https://doi.org/10.1029/2019GC008496
|
412 |
Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1-2), 479-487. https://doi.org/10.1007/ bf01016429
|
412 |
Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated Annealing. Physica A: Statistical Mechanics and its Applications, 233(1), 395-406. https://doi.org/10.1016/s0378-4371(96)00271-3
|
412 |
T. Ninivaggi1, G. Selvaggi2, S. Mazza2, M. Filippucci2,2,3, F. Tursi4, W. Czuba5
|
413 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Irpinia, Grottaminarda, Italy
|
413 |
2 Istituto Nazionale di Geofisica e Vulcanologia, ONT, Roma, Italy
|
413 |
3 Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari
|
413 |
“Aldo Moro”, Bari, Italy
|
413 |
4 Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
|
413 |
5 Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
|
413 |
Fig. 1 – Observation of the later seismic phase. a) Stations which recorded the x-phase (green triangles). Seismograms of stations in black do not show the later arrival. Section trace AB of the Fig. 3, passing from the 2011 earthquake (n. 37). The red lines delineate the old (30 Ma) and the present subduction signature. The two thin black lines delineate the azimuths -60° and 30° starting from the epicentre. b) Time-distance vertical seismograms of the 2011 event aligned with P arrival time at 20 s. The red line marks the later phase arrivals.
|
414 |
References
|
419 |
Amato, A., Alessandrini, B., Cimini, G., Frepoli, A., Selvaggi, G.; 1993: Active and remnant subducted slabs beneath Italy: evidence from seismic tomography and seismicity. Ann. Geophys. 36 (2) https://doi.org/10.4401/ag-4272.
|
419 |
Cai, N., Qi, X., Chen, T., Wang, S., Yu, T., Wang, Y., et al.; 2021: Enhanced visibility of subduction slabs by the formation of dense hydrous phase A. Geophys. Res. Lett. 48 (19), 1–10. https://doi.org/10.1029/2021GL095487.
|
419 |
Červený, V., Pšenčík, I.; 1984: SEIS83-Numerical modelling of seismic wave fields in 2-D laterally varying layered structures by the ray method. In: Engdahl, E.R. (Ed.), Documentation of Earthquake Algorithms, Report SE-35. World Data Center A for Solid Earth Geophysics, Boulder, pp. 36–40.
|
419 |
Červený, V., Molotkov, I.A., Pšenčík, I.; 1977: Ray method in seismology. Charles Univ. Press, Praha.
|
419 |
Collier, J.D., Helffrich, G.R., Wood, B.J.; 2001: Seismic discontinuities and subduction zones. Phys. Earth Planet. Inter. 127 (1–4), 35–49. https://doi.org/10.1016/S0031-9201(01)00220-5.
|
419 |
European Integrated Data Archive; 2023: http://eida.ingv.it/ (accessed 31 October 2021).
|
419 |
Furumura, T., Kennett, B.L.N., Padhy, S.; 2016: Enhanced waveguide effect for deep-focus earthquakes in the subducting Pacific slab produced by a metastable olivine wedge. J. Geophys. Res. Solid Earth 121, 6779–6796. https://doi.org/10.1002/2016JB013300.
|
419 |
Hacker, B.R., Abers, G.A., Peacock, S.M.; 2003: Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents. J. Geophys. Res. Solid Earth 108 (B1), 1–26. https://doi.org/10.1029/2001jb001127.
|
419 |
ISIDe Working Group; 2007: Italian Seismological Instrumental and Parametric Database (ISIDe) [Dataset]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.Org/10.13127/ISIDE.
|
419 |
Incorporated Research Institutions for Seismology Data Management Centre; 2023: https://service.iris.edu/ (accessed 31 October 2021).
|
419 |
Kennett, B.L.N., Engdahl, E.R.; 1991: Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
|
419 |
Murphy, J.R., Barker, B.W.; 2006: Improved focal-depth determination through automated identification of the seismic depth phases pP and sP. Bull. Seismol. Soc. Am. 96 (4A), 1213–1229. https://doi.org/10.1785/0120050259.
|
419 |
Pino, N.A., Helmberger, D.V.; 1997: Upper mantle compressional velocity structure beneath the West Mediterranean Basin. J. Geophys. Res. 102 (B2), 2953–2967. https://doi.org/10.1029/96JB03461.
|
419 |
Scarfì, L., Barberi, G., Barreca, G., Cannavò, F., Koulakov, I., Patanè, D.; 2018: Slab narrowing in the Central Mediterranean: the Calabro-Ionian subduction zone as imaged by high resolution seismic tomography. Sci. Rep. 8 (1), 1–12. https://doi.org/10.1038/s41598.018-23543-8.
|
419 |
van Keken, P.E., Hacker, B.R., Syracuse, E.M., Abers, G.A.; 2011: Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401. https://doi.org/10.1029/2010JB007922.
|
420 |
Zhao, C.A.; 2019: Importance of later phases in seismic tomography. Phys. Earth Planet. Inter. 296, 106314 https://doi.org/10.1016/j.pepi.2019.106314.
|
420 |
Zhao, D., Matsuzawa, T., Hasegawa, A.; 1997: Morphology of the subducting slab boundary in the northeastern Japan arc. Phys. Earth Planet. Inter. 102 (1–2), 89–104. https://doi.org/10.1016/S0031-9201(96)03258-X.
|
420 |
1 Università degli studi di Trieste
|
421 |
2 Istituto di Oceanografia e di Geofisica Sperimentale, OGS, Trieste
|
421 |
3 EvK2cnr, Bergamo
|
421 |
Gibbons, S.J., Ringdal, F.; 2006: The detection of low magnitude seismic events using array-based waveform correlation. Geophys. J. Int. 165 (1), 149–166.
|
421 |
Pettenati F., C. Cravos, T. Dawa Sherpa, L. Adhikari Sherpa, M. P. Plasencia Linares, M. Romanelli, G. Verza; 2014: The installation of a new broadband seismometer to the EVK2-CNR Pyramid International Laboratory-Observatory (Everest, Nepal). 33° Convegno Nazionale Gruppo Nazionale di Geofisica della Terra Solida GNGTS. Bologna, 25-27 Novembre. 2014. Abstract.
|
421 |
Vuan A., Sugan M., Amati G., Kato A.; 2018: Improving the Detection of Low‐Magnitude Seismicity Preceding the Mw 6.3 L’Aquila Earthquake: Development of a Scalable Code Based on the Cross Correlation of Template Earthquakes. Bull Seismol Soc Am 2018; 108 (1), 471–480. doi: https://doi.org/10.1785/0120170106
|
421 |
1 Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, "Aldo Moro", Bari, Italy
|
422 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
|
422 |
Kelbert, A. (2020). The role of global/regional Earth conductivity models in natural geomagnetic hazard mitigation. Surveys in Geophysics,41, 115–166.https://doi.org/10.1007/s10712-019-09579-z
|
423 |
1.Department of Mathematics, Computer Sciences, Physics, and Earth Sciences, University of Messina, Italy
|
424 |
2.Institut Cartogràfic i Geològic de Catalunya, Barcelona, Spain;
|
424 |
3.Instituto Andaluz de Geofísica, Universidad de Granada, Spain
|
424 |
Orecchio B., Scolaro S., Batlló J., Neri G., Presti D., Stich D., and Totaro C., (2021). New Results for the 1968 Belice, South Italy, Seismic Sequence: Solving the Long‐Lasting Ambiguity on Causative Source, Seismol. Res. Lett., 92(4), 2364-2381. Doi:10.1785/0220200277
|
425 |
Rovida A., Locati M., Camassi R., Lolli B., Gasperini P., and Antonucci A. (2022). Italian Parametric Earthquake Catalogue (CPTI15), version 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). doi:10.13127/CPTI/CPTI15.4
|
425 |
Stich D., Batlló J., Macià R., Teves-Costa P., and Morales J. (2005). Moment tensor inversion with single-component historical seismograms: The 1909 Benavente (Portugal) and Lambesc (France) earthquakes, Geophys. J. Int., 162(3), 850–858. Doi: 10.1111/j.1365-246X.2005.02680.x
|
425 |
References
|
429 |
Davies J. H.; 2003: Elastic field in a semi-infinite solid due to thermal expansion or a coherently misfitting inclusion. J. Appl. Mech. 70 (5), 655–660.
|
429 |
Federico C., Cocina O., Gambino S., Paonita A., Branca S., Coltelli M., Italiano F., Bruno V., Caltabiano T., Camarda M., Capasso G., De Gregorio S., Diliberto I. S., Di Martino R. M. R., Falsaperla S., Greco F., Pecoraino G., Salerno G., Sciotto M., Bellomo S., Di Grazia G., Ferrari F., Gattuso A., La Pica L., Mattia M., Pisciotta A. F., Pruiti L., Sortino F.; 2023: Inferences on the 2021 ongoing volcanic unrest at vulcano island (Italy) through a comprehensive multidisciplinary surveillance network. Remote Sens. 15, 1405.
|
429 |
Hemmings B., Gottsmann J., Whitaker F., Coco A.; 2016: Investigating hydrological contributions to volcano monitoring signals: A time-lapse gravity example. Geophys. J. Int. 207 (1), 259–273.
|
429 |
Rinaldi A. P., Todesco M., Vandemeulebrouck J., Revil A., Bonafede M.; 2011: Electrical conductivity, ground displacement, gravity changes, and gas flow at solfatara crater (Campi Flegrei caldera, Italy): results from numerical modeling. J. Volcanol. Geother. Res. 207 (3-4), 93–105.
|
429 |
Stissi S. C., Napoli R., Currenti G., Afanasyev A., Montegrossi G.; 2021: Influence of permeability on the hydrothermal system at Vulcano Island (Italy): inferences from numerical simulations. Earth, Planets Space 73, 179.
|
429 |
Stissi S. C., Currenti G., Cannavò F., Napoli, R.; 2023: Evidence of poro-elastic inflation at the onset of the 2021 Vulcano Island (Italy) unrest. Front Earth Sci 11:1179095.
|
429 |
Wang H. F.; 2000: Theory of linear poroelasticity with Applications to Geomechanics and hydrogeology. Princeton University Press.
|
429 |
1Department of Psychological Sciences, Health and Territory, University of the Studies “G. d'Annunzio”, Chieti, Italy
|
430 |
2CRUST-Interuniversity Center for 3D Seismotectonics with Territorial Applications, Chieti, Italy
|
430 |
3Dipartimento di Fisica e Astronomia (DIFA), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
|
430 |
Bagh, S., Chiaraluce, L., De Gori, P., Moretti, M., Govoni, A., Chiarabba, C., Di Bartolomeo, P., Romanelli, M., 2007. Background seismicity in the Central Apennines of Italy: The Abruzzo region case study. Tectonophysics 444, 80–92. https://doi.org/10.1016/j.tecto.2007.08.009
|
432 |
De Siena, L., Thomas, C., Aster, R., 2014. Multi-scale reasonable attenuation tomography analysis (MuRAT): An imaging algorithm designed for volcanic regions. Journal of Volcanology and Geothermal Research 277, 22–35. https://doi.org/10.1016/j.jvolgeores.2014.03.009
|
432 |
De Siena, L., Thomas, C., Waite, G.P., Moran, S.C., Klemme, S., 2014. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens. J. Geophys. Res. Solid Earth 119, 8223–8238. https://doi.org/10.1002/2014JB011372
|
432 |
Di Martino, M.D.P., De Siena, L., Tisato, N., 2022. Pore Space Topology Controls Ultrasonic Waveforms in Dry Volcanic Rocks. Geophysical Research Letters 49. https://doi.org/10.1029/2022GL100310
|
432 |
Di Stefano, R., Ciaccio, M.G., 2014. The lithosphere and asthenosphere system in Italy as inferred from the Vp and Vs 3D velocity model and Moho map. Journal of Geodynamics 82, 16–25. https://doi.org/10.1016/j.jog.2014.09.006
|
432 |
Frepoli, A., Cimini, G.B., De Gori, P., De Luca, G., Marchetti, A., Monna, S., Montuori, C., Pagliuca, N.M., 2017. Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity. Tectonophysics 712–713, 312–329. https://doi.org/10.1016/j.tecto.2017.05.026
|
432 |
Gualtieri, L., Serretti, P., Morelli, A., 2014. Finite-difference P wave travel time seismic tomography of the crust and uppermost mantle in the Italian region: P WAVE TOMOGRAPHY OF THE ITALIAN REGION. Geochem. Geophys. Geosyst. 15, 69–88. https://doi.org/10.1002/2013GC004988
|
432 |
King, T., De Siena, L., Benson, P., Vinciguerra, S., 2022. Mapping faults in the laboratory with seismic scattering 1: the laboratory perspective. Geophysical Journal International 232, 1590–1599. https://doi.org/10.1093/gji/ggac409
|
432 |
King, T., De Siena, L., Zhang, Y., Nakata, N., Benson, P., Vinciguerra, S., 2023. Mapping faults in the laboratory with seismic scattering 2: the modelling perspective. Geophysical Journal International 234, 1024–1031. https://doi.org/10.1093/gji/ggad100
|
432 |
Reiss, M.C., De Siena, L., Muirhead, J.D., 2022. The Interconnected Magmatic Plumbing System of the Natron Rift. Geophysical Research Letters 49. https://doi.org/10.1029/2022GL098922
|
432 |
Romano, M.A., de Nardis, R., Garbin, M., Peruzza, L., Priolo, E., Lavecchia, G., Romanelli, M., 2013. Temporary seismic monitoring of the Sulmona area (Abruzzo, Italy): a quality study of microearthquake locations. Nat. Hazards Earth Syst. Sci. 13, 2727–2744. https://doi.org/10.5194/nhess-13-2727-2013
|
432 |
Scafidi, D., Solarino, S., Eva, C., 2009. P wave seismic velocity and Vp/Vs ratio beneath the Italian peninsula from local earthquake tomography. Tectonophysics 465, 1–23. https://doi.org/10.1016/j.tecto.2008.07.013
|
432 |
Sketsiou, P., De Siena, L., Gabrielli, S., Napolitano, F., 2021. 3-D attenuation image of fluid storage and tectonic interactions across the Pollino fault network. Geophysical Journal International 226, 536–547. https://doi.org/10.1093/gji/ggab109
|
432 |
Tisato, N., Quintal, B., 2014. Laboratory measurements of seismic attenuation in sandstone: Strain versus fluid saturation effects. GEOPHYSICS 79, WB9–WB14. https://doi.org/10.1190/geo2013-0419.1
|
433 |
Trionfera, B., Frepoli, A., De Luca, G., De Gori, P., Doglioni, C., 2019. The 2013–2018 Matese and Beneventano Seismic Sequences (Central–Southern Apennines): New Constraints on the Hypocentral Depth Determination. Geosciences 10, 17. https://doi.org/10.3390/geosciences10010017
|
433 |
Zhao, L., Paul, A., Malusà, M.G., Xu, X., Zheng, T., Solarino, S., Guillot, S., Schwartz, S., Dumont, T., Salimbeni, S., Aubert, C., Pondrelli, S., Wang, Q., Zhu, R., 2016. Continuity of the Alpine slab unraveled by high-resolution P wave tomography: Continuity of the Alpine Slab. J. Geophys. Res. Solid Earth 121, 8720–8737. https://doi.org/10.1002/2016JB013310
|
433 |
1National Institute of Oceanography and Applied Geophysics - OGS - Italy
|
434 |
Herring, T.A. and King, R., Floyd, M.A. and McClusky, S. C.; 2018: GAMIT Reference Manual: GPS Analysis at MIT, Release 10.7. Department of Earth. Tech. rep., Massachusetts Institute of Technology, Cambridge, Mass. URL: <http://geoweb.mit.edu/gg/Intro_GG.pdf>
|
435 |
Tunini, L., Magrin, A., Rossi, G., and Zuliani, D.; 2023: GNSS time series and velocities about a slow convergent margin processed on HPC clusters: products and robustness evaluation, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2023-131, in review.
|
435 |
Zuliani, D., Fabris, P., Rossi, G.; 2019: FReDNet: Evolution of permanent GNSS receiver system. In: New Advanced GNSS and 3D Spatial Techniques Applications to Civil and Environmental Engineering, Geophysics, Architecture, Archeology and Cultural Heritage, Lecture Notes in Geoinformation and Cartography; Cefalo, R., Zielinski, J., Barbarella, M., Eds.; Springer: Cham, Switzerland, pp.123–137.
|
435 |
1Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italia
|
436 |
22_Abstract_GNGTS2024.pdf
|
522 |
DISASTER RISK ANALYSIS AND REDUCTION
|
522 |
M. Ariano1, P.L. Fantozzi1, D. Albarello1
|
524 |
1Department of Physics Sciences, Earth and Environment, University of Siena, Siena, Italy
|
524 |
D. Attolico1,2, G. Cultrera1, V. De Rubeis1, N. Theodoulidis1
|
534 |
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy)
|
534 |
2 Asset - Agenzia regionale Strategica per lo Sviluppo Ecosostenibile del Territorio (Regione Puglia, Italy)
|
534 |
S. Azhideh, S. Barani, G. Ferretti, D. Scafidi, G. Pepe
|
535 |
1 Università degli Studi di Genova, Genova, Italy
|
535 |
Fig. 1 Example distribution of M and R with indication of the mean and modal scenarios.
|
536 |
Fig. 2 Comparison of the mean and modal M-R scenarios shown in Figure 1 with the upper-bound curve for disrupted slides and falls proposed by Keefer (1984). The preferred M-R pair is displayed in red.
|
537 |
Fig. 3 Map of preferred magnitude (a) and distance (b) associated with the PGA hazard for a 475-yr return period and corresponding earthquake-induced landslide triggering map (c). In the latter, red points are nodes for which the triggering of earthquake-induced landslides can not be excluded.
|
538 |
1 National Institute of Oceanography and Applied Geophysics –OGS, Italy
|
540 |
2 National Institute of Geophysics and Volcanology –INGV, Italy
|
540 |
3 University of Ferrara - Italy
|
540 |
Fig. 1: The study area in the Po plain, near the city of Ferrara: on the left, noise measurements and seismic station position; on the right, Vs profiles available.
|
541 |
P.L. Bragato1, J. Boaga2, G. Capotosti1, P. Comelli1, S. Parolai1,3, G. Rossi1, H. Siracusa1, P. Ziani1, D. Zuliani1
|
543 |
1 National Institute of Oceanography and Applied Geophysics – OGS, Italy
|
543 |
2 University of Padova, Italy
|
543 |
3 University of Trieste, Italy
|
543 |
Fig. 1 – Stations composing the dense accelerometric network in Veneto: green, organizations of volunteers and other public edifices; red, telephone exchange buildings of TIM s.p.a.; yellow, post offices of Poste Italiane s.p.a.
|
544 |
G. Caielli1, R. de Franco1, I. Gaudiosi2, A. Mendicelli2, M. Moscatelli2, G. Norini1, D. Rusconi1, M. Simionato2.
|
545 |
1 ISTITUTO DI GEOLOGIA AMBIENTALE E GEOINGEGNERIA – CNR - Milano - Italy
|
545 |
2 ISTITUTO DI GEOLOGIA AMBIENTALE E GEOINGEGNERIA – CNR - Montelibretti - Italy
|
545 |
This work was carried out as part of the projects:
|
547 |
N. Carfagna1, P. Pieruccini2, P. Fantozzi1, D. Albarello2,3
|
548 |
1 Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy
|
548 |
N. Cella, C. Bedon
|
550 |
University of Trieste, Department of Engineering and Architecture, Trieste, Italy
|
550 |
C. Comina 1, G.M. Adinolfi1, A. Bertea2, C. Bertok1, V. Giraud2, P. Pieruccini1
|
559 |
1 Università degli studi di Torino, Department of Earth Sciences; Torino, Italy.
|
559 |
2 Seismic Sector, Piedmont Region; Pinerolo, Italy.
|
559 |
Figure 1 – Map of the Geological Domains within the Piedmont Region, black dots represent the available geophysical information in terms of shear wave velocity profiles from Regional repository database, on purpose implemented information and specific field tests executed.
|
560 |
Figure 3 – Average Vs,z profiles for the non-bedrock units for each GD.
|
562 |
G. Cultrera1 , A. Mercuri1
|
564 |
(1) Istituto Nazionale di Geofisica e Vulcanologia, Roma - Italy
|
564 |
Fig. 1 – Data distribution for lithological classification grouped by rock categories with similar genesis(left) and Site classification from NTC18 (right).
|
565 |
Fig. 3 – Distribution of f0 from HVnoise, with respect to the magnitude residuals.
|
566 |
A. D’Agostino1, A. Porchia2, G. Cavuoto3, F. Pavano3, M. Moscatelli2, G. Tortorici2, S. Catalano1,2
|
567 |
1 Department of Biological, Geological and Environmental Sciences (DBGES) – Section of Earth Science, University of Catania.
|
567 |
2 IGAG-CNR - Institute of Environmental Geology and Geoengineering of the Italian National Research Council, Area Della Ricerca di Roma 1.
|
567 |
3 ISPC-CNR - Institute of Heritage Science of the Italian National Research Council, Napoli.
|
567 |
M. Fasan1, C. Bedon1, F. Romanelli2
|
572 |
1 University of Trieste, Department of Engineering and Architecture
|
572 |
2 University of Trieste, Department of Mathematics and Geosciences
|
572 |
Fig. 1 – Example of different realizations of the rupture process
|
574 |
Fig. 2 – Cloud data (indicated with NC) and regressions obtained for the four studied configurations (PGA)
|
576 |
Fig. 3 - Fragility curves obtained for the four studied configurations (PGA)
|
577 |
S. F. Fornasari , V. Pazzi , G. Costa
|
579 |
Dipartimento di Matematica, Informatica e Geoscienze (MIGE - Università degli Studi di Trieste, Italia)
|
579 |
I. Gaudiosi1, G. Acunzo2, D. Albarello3, M. Moscatelli1
|
594 |
1 Istituto di Geologia Ambientale e Geoingegneria (CNR, Italy)
|
594 |
2 Theta Group (Italy)
|
594 |
3 Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente (Università degli Studi di Siena, Italy)
|
594 |
S. Hailemikael1, G. Cultrera1, C. Barnaba2, G. Laurenzano2, G. Martini1,3, A. Peloso3, F. Cara1, G. Di Giulio1, D. Famiani1
|
596 |
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy.
|
596 |
2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy.
|
596 |
3 Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Frascati, Italy.
|
596 |
Fig. 1 - Distribution of residuals between median FA_exp and Fa_syn values (in natural logarithmic units) as a function of period: short (FA1 blue), intermediate (red) and long periods (green).
|
597 |
G. Laurenzano1, N. Tragni2, P. Klin1, TA Stabile2, MR Gallipoli2 & PRIN SERENA WP06 WG
|
599 |
A. Mazelli1,2, C. Bedon2, A. Morassi1
|
603 |
1 University of Udine, Polytechnic Department of Engineering and Architecture, Udine, Italy
|
603 |
2 University of Trieste, Department of Engineering and Architecture, Trieste, Italy
|
603 |
A. Mendicelli1, F. Mori1, C. Varone1, M. Simionato1, M. Moscatelli1
|
611 |
At present, the most detailed geological map covering the entire Italian national territory is the 1:100,000 scale geological map of Italy created by ISPRA. To estimate the stratigraphic amplification of seismic motion at the surface over a large area, it is crucial to better define the geological and lithotechnical characteristics of covering soils and geological bedrocks. This work is aimed at improving the definition of recent alluvial covers (Holocene and Upper Pleistocene deposits) compared to the 1:100,000 geological map of Italy. For this purpose, a methodology based on machine learning models has been developed. It considers both categorical and numerical variables to predict the presence/absence of recent flood coverage with good accuracy.
|
611 |
To train the machine learning model, both geomorphometric parameters and geological databases at different scales were used. Initially, the methodology was tested in the Calabria Region and in the Marche Region, for which promising results were obtained with good performances in the external test. The next step, still in the development phase, consists in the application of the methodology in a wider area which includes not only the Calabria and Marche regions but also Tuscany, Emilia-Romagna and Umbria. The model thus obtained will be tested across the entire national territory.
|
611 |
This research was supported with funds from the PNRR, from the project: “National Center for HPC, Big Data and Quantum Computing – HPC – SPOKE 5” – CN00000013.
|
611 |
L. Minarelli1, M. Stefani2, S. Amoroso3-1, G. Tarabusi1
|
612 |
1Istituto Nazionale di Geofisica e Vulcanologia, Italy
|
612 |
2University of Ferrara, Italy
|
612 |
3 University of Chieti-Pescara, Italy
|
612 |
1 Istituto Nazionale di Geofisica e Vulcanologia – INGV, Milan, Italy
|
621 |
2 CNR Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”, Milan, Italy
|
621 |
3 Istituto Nazionale di Geofisica e Vulcanologia – INGV, Catania, Italy
|
621 |
1 Istituto Nazionale di Geofisica e Vulcanologia (Italia)
|
627 |
Fig. 1. Schematic representation of the current structure and activities of the SISMIKO Operational Group.
|
628 |
1 University of Molise, Dept. of Biosciences and Territory, Campobasso, Italy
|
629 |
2 Institute for Construction Technologies ITC-CNR, National Research Council, L’Aquila, Italy
|
629 |
3 S2X S.r.l., Campobasso, Italy
|
629 |
4 University of Molise, Dept. of Medicine and Health Sciences, Campobasso, Italy
|
629 |
Fig. 1 – Multi-level framework for safety management of health facilities structures
|
630 |
Fig. 2 – HF-INSPECT software
|
631 |
Fig. 3 – HF-ALL RISKS software (the figure illustrates the TFM for the hospital of Campobasso)
|
633 |
GIS spatial modelling for seismic exposure assessment: a case study over Central Asia.
|
639 |
A. Tamaro, C. Scaini
|
639 |
National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
|
639 |
G. Tarchini1, D. Spallarossa1, D. Scafidi1, S. Parolai2, M. Picozzi3, D. Bindi4
|
648 |
1 DISTAV, University of Genoa, Genoa, Italy
|
648 |
2 Department of Mathematics, Informatics and Geosciences, University of Trieste, Trieste, Italy
|
648 |
3 National Institute of Oceanography and Applied Geophysics – OGS, Udine, Italy
|
648 |
4 Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
|
648 |
Fig. 1 – STATION main webpage.
|
649 |
Fig. 2 – Example of specific webpage for the station IV.AQU.
|
650 |
Machine Learning-based modelling for Near Real-Time prediction of liquefaction
|
653 |
C. Varone1, F. Mori1, A. Mendicelli1, G. Ciotoli1, G. Acunzo2, G. Naso3, M. Moscatelli1
|
653 |
1 CNR Italian National Research Council, Institute of Environmental Geology and Geoengineering (IGAG), Montelibretti, Italy
|
653 |
2 Theta Group Srls, Rome, Italy
|
653 |
23_Abstract_GNGTS2024.pdf
|
655 |
GNGTS 2024
|
655 |
DISASTER RISK ANALYSIS AND REDUCTION
|
655 |
Towards the IT-ALERT implementation. Early warning and cell-broadcast systems in the context of risk and crisis communication
|
656 |
Tsunami Ready: some steps for a people-centred tsunami risk approach
|
661 |
“A Scuola di Terremoto”: a targeted risk education project in Calabria (South Italy) to promote behavioural change
|
666 |
Insights into risk communication from the analysis of earthquake light phenomena reports in Turkey and Morocco
|
672 |
E se… (What if…) a game to learn about risk perception
|
677 |
Fig. 1 – Poster of the Activity at Futuro Remoto 2023
|
678 |
Preparing for disasters through games: a worth taking bet?
|
680 |
From risk to safety for a resilient governance
|
682 |
Tsunami risk perception of the touristic population of Stromboli Island: towards effective risk communication strategies
|
689 |
Abstract
|
689 |
Methodology
|
689 |
Results
|
689 |
References
|
690 |
Risk education and communication: the experience of serious games and Situated Learning Episodes (ELS) in Pandemic
|
692 |
Real-time seismicity on your smartphone
|
695 |
M. Pignone1, E. Casarotti2, V. Lauciani1, C. Nostro1, C. Meletti3, A. Amato1
|
695 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Roma, Italy
|
695 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italy
|
695 |
3 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
|
695 |
References
|
699 |
Trust in authorities and experts as shaping factor of risk perception
|
700 |
R. Russo1, M. V. Gargiulo1, R. Iorio2, G. Cavalca2, P. Capuano1
|
700 |
1 Università degli Studi di Salerno, Department of Physics “E.R. Caianiello”, Fisciano (SA), Italy
|
700 |
In September 2019, the United Nations Secretary-General, António Guterres, remarked that our global community is experiencing a significant challenge known as 'Trust Deficit Disorder'. He noted a decline in people's trust in political institutions, a growing polarization, and the increasing prevalence of populism.
|
700 |
Seismic risk communication in Europe over the last two decades
|
702 |
G. Musacchio1, A. Saraò2, S. Falsaperla3, A. Scolobig4
|
702 |
1Sezione di Milano, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy
|
702 |
2Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Italy
|
702 |
3Sezione di Catania, Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy
|
702 |
4Institute for Environmental Sciences, University of Geneva, Switzerland; Equity and Justice Group, International Institute for Applied Systems Analysis, Austria
|
702 |
Fig. 1 – a) Publications on seismic risk communication over time. Raw data from Google Scholar database searches according to the strings listed in the text are plotted for all risks (right y-axis) and seismic risk communication (left y-axis) in Europe and worldwide; b) publications shortlisted for this review study.
|
703 |
Schools-tailored activities to communicate seismic risk
|
708 |
Seismic risk perception in italian hospitals: The role of non-structural elements
|
717 |
31_Abstract_GNGTS2024.pdf
|
722 |
GNGTS 2024
|
722 |
APPLIED GEOPHYSICS FOR ENERGY, ENVIRONMENT AND NEW TECHNOLOGIES
|
722 |
O. Amoroso1, V. Giampaolo2, M. Balasco2, M. Blasone1, D. Bubbico3, P. Capuano1, G. De Martino2, M.V. Gargiulo1, F. Napolitano1, A. Perrone2, S. Panebianco2, R. Russo1, V. Serlenga2, T.A. Stabile2
|
723 |
C. Bellezza, E. Barison, F. Poletto, A. Schleifer, F. Meneghini, G. Böhm, B. Farina
|
726 |
Acknowledgements
|
727 |
Salt domes modelling through magnetic data: an unconventional tool for challenging scenarios
|
728 |
L. Bianco1, M. Abbas1, L. Speranza2, B. Garcea2, M. Fedi1
|
728 |
1 Department of Earth, Environmental and Resources, University of Naples “Federico II”, Naples, Italy.
|
728 |
2 Energean, Milan, Italy.
|
728 |
T. Braun1, S. Danesi2
|
729 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Arezzo, Italy
|
729 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
|
729 |
Fig. 1 – Monitoring domains DE, DI and DR defined for the monitoring of the hydrocarbon exploitation in VA (after Danesi et al., 2021)
|
731 |
Fig. 2 – Example screenshot of the seismic activity in VA recorded in 2023 by INGV.
|
731 |
Comparison and calibration of Traffic Light Protocols applied in different countries, in the framework of the ENSURE-project
|
733 |
T. Braun1, S. Danesi 2
|
733 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Arezzo, Italy
|
733 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Italy
|
733 |
Fig. 1 – Operation principle of a Traffic Light Protocol
|
734 |
The MARE (MARine Energy) project Assessment of energy production potential from marine waves and currents: a case study from Aegadian archipelago
|
736 |
A. D'Alessandro1, A. Sulli2, M. Agate2, P. Capizzi2, C. Caruso1, L. Cocchi2, R. D'Anna2, A. Di Benedetto2, A. Figlioli1, M. Gasparo Morticelli2, A. Mandiello1, R. Martorana2, A. Pisciotta1, S. Speciale1, S. Sciré Scappuzzo1, S. Scudero1, G. Vitale1
|
736 |
1 Istituto Nazionale di Geofisisica e Vulcanologia, Italy
|
736 |
2 Università degli Studi di Palermo, Italy
|
736 |
Airborne and Ground IP: an integrated approach for exploration
|
743 |
F. Dauti1, A. Viezzoli2, G. Fiandaca1
|
743 |
1 The EEM Team for Hydro & eXploration, Dep. of Earth Sciences A. Desio, Università degli Studi di Milano, Via Botticelli 23, Milano (Italy)
|
743 |
2 Emergo s.r.l., Via XX Settembre 12, Cascina (Pisa), Italy
|
743 |
UAS photogrammetry analysis for coastal hazard assessment: the case study of Maronti landslide (Ischia, 2022)
|
750 |
1 Istituto Nazionale di Geofisica e Vulcanologia- Sezione Irpinia, Italy
|
750 |
2 Istituto Nazionale di Geofisica e Vulcanologia- Osservatorio Vesuviano, Italy
|
750 |
Fig. 1 – Pre and post 3D models, DSMs and section of the investigated area.
|
751 |
Time-lapse Gravity Monitoring at surface and Excess Mass Estimation of CO2 Stored in Deep Saline Aquifers
|
756 |
M. Milano1, M. Fedi1
|
756 |
1 Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, Napoli, Italy.
|
756 |
This study regards the assessment of surface gravity surveying for CO2 plume monitoring in a deep saline aquifer (Milano and Fedi, 2023). We simulated surface gravity monitoring of CO2 storage for the injection and post-injection phases and using different injection rates. We show that time lapse gravity data can be used to successfully estimate the CO2 stored mass by means of DEXP multiscale analysis, even when the anomaly is incompletely defined, due to a not proper areal coverage of the survey. The DEXP method has proven to be very stable with respect to noise and to be an efficient technique for simultaneously determining the CO2 plume depth, its geometrical features and stored mass.
|
756 |
SpiderTherm: Optimizing Geothermal Extraction for Sustainable Energy Transition
|
758 |
Molossi1, G. Gola2, A. Manzella2, M. Pipan1
|
758 |
S. Panebianco1,2, C. Satriano3, G. Vivone2, M. Picozzi4, A. Strollo5, T.A. Stabile2
|
763 |
1 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Italy
|
763 |
2 Consiglio Nazionale delle Ricerche (CNR-IMAA), Italy
|
763 |
3 Université Paris Cité, Institut de physique du globe de Paris, France.
|
763 |
4 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Italy.
|
763 |
5 GFZ German Research Centre for Geoscience, Potsdam, Germany.
|
763 |
Sabatini A.1, C. Pauselli1, S. Fuchs2, M. Ercoli1, P. Mancinelli1
|
764 |
1 Università degli Studi di Perugia, Dip. Fisica e Geologia, Italy.
|
764 |
2 GFZ German Research Centre for Geosciences, Germany.
|
764 |
Fig. 1 – Simplified scheme of the adopted approach
|
773 |
Seismic attribute analyses for geothermal applications: a case study from the geothermal potential assessment in the Valle Latina area (Central Italy).
|
775 |
G. Vico1,2, R. Maffucci2, S. Bigi1
|
775 |
1 Dipartimento di Scienze della Terra, Università di Roma La Sapienza, Italy
|
775 |
2Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
|
775 |
Fig. 1 - An example of vectorization results from the VIDEPI dataset, using the process described in this study. a) Scanned image of line FR-309-80. b) SEG-Y file extracted from the scanned image in a), plotted with similar parameters to the original, c) same SEG-Y data as in b) plotted with a variable density display. d) application of seismic attribute “semblance”; e) application of seismic attribute “pseudo-relief”.
|
776 |
This approach of seismic attribute analysis is extremely useful for geothermal exploration of similar fields and reservoirs with a strong AI contrast and the construction of more predictive static and dynamic reservoir models based on discontinuity detected by attribute analysis and seismic interpretation. Seismic attributes are very useful in characterizing faults and fractures also in 2D seismic data volumes. The pseudo-relief attribute application made the interpretation of the main unconformities and structural features possible.
|
777 |
Electromagnetic Induction Data Inversion: Realistic Prior Models and Spatial Regularization with Respect to Known Structures
|
779 |
N. Zaru1, M. Rossi2, G. Vacca1, G. Vignoli1,3
|
779 |
1 DICAAR - University of Cagliari, Italy
|
779 |
2 Engineering Geology Division – Lund University, Sweden
|
779 |
3 Near Surface Land and Marine Geology Department - GEUS, Denmark
|
779 |
Probabilistic Petrophysical Inversion of Ground-Based FDEM Data for Alpine Peatland Characterization: A Case Study in the Italian Dolomites
|
784 |
N. Zaru1, S. Silvestri2, M. Assiri3, P. Bai4, T.M. Hansen5, G. Vignoli1,6
|
784 |
1 DICAAR - University of Cagliari, Italy
|
784 |
2 University of Bologna, Italy
|
784 |
3 University of Padua, Italy
|
784 |
4 SINOPEC, China
|
784 |
5 Aarhus University, Denmark
|
784 |
6 Near Surface Land and Marine Geology Department, GEUS, Denmark
|
784 |
Fig. 1 – Horizontal slices presenting the inversion outcomes derived from the Frequency-Domain Electromagnetic Induction (FDEM) data collected across the Danta peatland in Italy. Each row shows the resistivity model with maximum likelihood and the probability of encountering peat or clay. Rows (a-b) depict these models and probabilities at depths of 3.0 m and 7.0 m respectively. In the third column, above the peat probability, the figure displays the profile's location shown in Figure 2 (highlighted in bright green), along with the positions of associated boreholes marked by red X.
|
786 |
Fig. 2 – Vertical profile presenting the chi-squared value of the deterministic (blue) and maximum likelihood (red) models in the top panel. The deterministic model obtained with the standard Occam’s inversion is shown in the middle panel; the maximum likelihood model obtained with the probabilistic inversion in the bottom panel. The horizontal blue and red lines in the fist panel represent the average chi-squared values associated with the two models.
|
787 |
Fig. 3 – Vertical profile presenting the inversion outcomes derived from the Frequency-Domain Electromagnetic Induction (FDEM) data collected across the Danta peatland in Italy.
|
788 |
Reference
|
789 |
32_Abstract_GNGTS2024.pdf
|
791 |
GNGTS 2024
|
791 |
APPLIED GEOPHYSICS FOR ENERGY, ENVIRONMENT AND NEW TECHNOLOGIES
|
791 |
F. Accomando1 and G. Florio1
|
792 |
1 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse – Università di Napoli “Federico II”, Italia.
|
792 |
In recent years, there was a notable technological advancement in geophysical sensors. In the case of magnetometry, several sensors were used having the common feature to be miniaturized and lightweight, thus idoneous to be carried by UAV in drone-borne magnetometric surveys. Moreover, such sensors have the common feature to be very cheap, so that it is in principle very easy to have the resources to combine two or three of them to form gradiometers. Nonetheless, another common feature is that their sensitivity ranges from 0.1 to about 200 nT, thus not comparable to that of alkali vapor, standard flux-gate or even proton magnetometers. However, their low-cost, small volume and weight remain as very interesting features of these sensors. In this communication, we want to explore the range of applications of small tri-axial magnetometers commonly used for attitude determination in several devices. We compare the results of ground-based surveys performed with conventional geophysical instruments with those obtained using these sensors.
|
792 |
G.M. Adinolfi 1 , C. Comina 1, S.C. Vinciguerra 1
|
793 |
1 Department of Earth Sciences, University of Turin, Turin, Italy
|
793 |
Combined 3D surface wave and refraction analysis around the Scrovegni Chapel in Padua, Italy
|
795 |
I. Barone1, M. Pavoni1, J. T. F. Ting1, J. Boaga1,3, G. Cassiani1,3, D. Dupuy4, R. Deiana2,3
|
795 |
1 Università degli Studi di Padova, Dipartimento di Geoscienze, Padova
|
795 |
Fig. 1 – Acquisition scheme for the dense 3D seismic survey. 1C and 3D seismic nodes are represented as blue and yellow triangles, respectively, while active source locations are represented as red stars.
|
796 |
P-and S-velocity 3D model for the characterisation of the subsurface beneath the village of Arquata del Tronto
|
798 |
G. Böhm1, A. Affatato1, L. Baradello1, G. Brancatelli1, E. Forlin1, F. Meneghini1
|
798 |
1 National Institute of Oceanography and Applied Geophysics – OGS (Italy)
|
798 |
Fig. 2 – Complete 3D Vp model from the travel time tomography of the three lines. a) 3D view. b) Vertical sections extracted along the east-west direction and spaced 25 m apart (see map top right). c) Vertical sections extracted along the north-south direction and spaced 25 m apart (see map top right).
|
800 |
Fig. 3 – Horizontal slices corresponding to different depths of the final 3D tomographic P velocity model. The Z coordinate denotes the depth in relation to the corresponding topographic elevation.
|
801 |
4. Results and conclusions
|
801 |
Monitoring of the saline wedge in the Po di Goro river.
|
803 |
P. Boldrin1, E. Ferrari1, F. Droghetti1, A. Bondesan2, E. Rizzo1
|
803 |
1 University of Ferrara (Dipartimento di Fisica e Scienze della Terra, Ferrara, Italy )
|
803 |
2 Consorzio di Bonifica di Ferrara (Italy )
|
803 |
Fig.1: The map shows the pathway of the acquisitions. The acquisitions carried out in two different times of the day along part of Po di Goro (15 Km). During the morning (8.00 AM) when there was low tide and during the afternoon (13.00 PM) when there was a peak of maximum tide. The two paths have an overlap of about 1.5 Km. The different EMs were performed using different frequency of Profiler. It was located on a inflatable boat pulled by a kayak.
|
804 |
Deep Electric Resistivity Tomography (DERT) on the Cazzaso Landslide
|
805 |
1 OGS – Istituto Nazionale di Oceanografia e di geofisica Sperimentale, Trieste, Italia.
|
805 |
2DISAT – Dipartimento di Scienze dell’Ambiente e della terra, Università degli Studi Milano – Bicocca, Milano, Italia.
|
805 |
3SCVSA - Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italia.
|
805 |
4Servizio Geologico, Regione Autonoma Friuli Venezia Giulia, Trieste, Italia.
|
805 |
Fig 1 Layout of the MS and FW profiles in the area of the Cazzaso landslide.
|
807 |
Fig 2 Resistivity model of the ERT3 line, in the transverse direction respect to the landslide.
|
809 |
Fig 3 Resistivity volume (20 - 120 Ωm) extracted from the FullWaver cube showing the whole conductive pelitic complex and the contact between this and the dolomite.
|
810 |
What does the seismic record of a World War II bomb-explosion look like? observations from a controlled detonation in 26 november 2023 near Ferrara, Italy
|
812 |
1Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Italy
|
812 |
2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
|
812 |
Figure 1: SNet4Fer 2.0/3.0 seismic networks (green triangles). The red star represents the point where the WWII bomb was detonated; the circles represent the internal (red) and external (orange) monitoring domains of the Casaglia geothermal field.
|
813 |
Figure 2. Examples of the bomb explosion seismograms recorded in stations from the SNet4Fer network. The first two panels show the 3-component records in the SNet4Fer 3.0 stations FEM0 and FEM1 (the seismograms are from the borehole sensors). The third and fourth panels show the records of two NetFer2.0 stations: PONT (3 components) and FORN stations (1 component).
|
814 |
L. Capozzoli1, G. De Martino1, S. Imperatore2, F. Nerilli2, L. Telesca1, E. Vasanelli3
|
822 |
Fig. 1 - The innovative multi-scale and multi-sensor based approach of ICARUS
|
824 |
A Dynamic and Multi-Source Hydrogeophysical Model to Remediate a Complex Hydrocarbon-Contaminated Site
|
826 |
P.Ciampi1, G.Cassiani2, G.P.Deidda3, C.Esposito1, G.Scarascia Mugnozza1, M. Petrangeli Papini4
|
826 |
1 Department of Earth Science, Sapienza University of Rome
|
826 |
2 Department of Geosciences, University of Padua
|
826 |
3 Department of Civil, Environmental Engineering and Architecture, University of Cagliari
|
826 |
4 Department of Chemistry, Sapienza University of Rome
|
826 |
G. Cianchini1, C. Fidani1,2, A. Piscini1, M. Soldani1, A. De Santis1, L. Perrone1 , M. Orlando1, D. Sabbagh1
|
828 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
|
828 |
2 Central Italy Electromagnetic Network, Fermo, Italy
|
828 |
Fig. 1 – Spectrograms recorded on December 22, 2022, from 19:52 to 22:19 LT; the time is marked every 5 minutes by the vertical dotted lines. Frequency was reported in the logarithm scale on the y-axis and power of signals in dB by a colour legend. Two bands are related to the electrode E-W on the top, and to the microphone recording below. Labels on the left and in the middle referred to the power spectra intensities and times of the spectrograms.
|
829 |
Fig. 2 – The acoustic spectrogram recorded on April 18 and the morning of 19, 2023, includes the moment of a small seismic event that occurred at Mirabella, M=2.1, about 20 km from Mefite. The Mirabella earthquake time is indicated by a vertical cyan arrow. Main eigenfrequencies and sudden puffs on the power spectra are indicated.
|
831 |
Fig. 3 – Details of the power spectrum relative to three moments (of less than 10 minutes to one hour) hours before the Mirabella M=2.1 earthquake. Periodic modulations of the noise of less than 10 minutes were evidenced between 200 and 800 Hz, on the left. The entire series of resonances from 19 to 170 Hz appeared during the damping interval at the centre. A detail of one of the three puffs is reported on the right where the sudden increase followed by a gradual fading that lasted two minutes is shown. The right plot also shows an unexpected growth of sound in a well-defined range between 55 and 80 Hz.
|
832 |
F. D’Ajello Caracciolo1, I. Nicolosi1, V. Sapia1, V. Materni1, G. Tusa1, M. Paratore1, R. Azzaro1
|
833 |
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV)
|
833 |
Combining active and passive methods to understand the seismic velocity distribution in a thick Quaternary succession of the Po Plain. (Terre del Reno, Ferrara, Italy)
|
837 |
G. Di Giulio1, L. Minarelli1, M. Stefani2, G. Milana1, G. Tarabusi1, M. Vassallo1, S. Amoroso1,3, A. Affatato4, L. Baradello4, L. Petronio4
|
837 |
Inductive Induced Polarization Effects: the Loupe EM synthetic case study
|
842 |
F. Dauti1, A. Viezzoli2, G. Fiandaca1
|
842 |
1 The EEM Team for Hydro & eXploration, Dep. of Earth Sciences A. Desio, Università degli Studi di Milano, Milano (Italy)
|
842 |
2 Emergo s.r.l., Cascina (Italy)
|
842 |
M. Ercoli1*, N. Cavalagli2, M. Barchi1, C. Pauselli1, M. Porreca1, R. Lupi3.
|
851 |
Mapping surface/ground water interactions and embarkment composition along the Po river with transient electromagnetics
|
853 |
G. Fiandaca1, A. Signora1, S. Galli1, J. Chen1, C. Compostella1, M. Gisolo2, A. Viezzoli3
|
853 |
Acknowledgments
|
855 |
References
|
855 |
S. Galli1, A. Signora1, J. Chen1, F. Schaars2, M. Grohen3, G. Fiandaca1
|
856 |
1 The EEM Team for Hydro and eXploration, Dep. of Earth Sciences A. Desio, Università degli Studi di Milano, Milano (Italy)
|
856 |
2 Artesia Water, Schoonhoven (The Netherlands)
|
856 |
3 Wiertsema & partners, Tolbert (The Netherlands)
|
856 |
Figure 2: Comparison of standard inversion and bathymetric inversion of FloaTEM data. Top right: bathymetry incorporated in the inversion; Bottom left: standard inversion, without bathymetry incorporation; Top left: ratio between inversion with/without bathymetry incorporation; Bottom right: histogram of the ratio of the resistivity values of the two inversions.
|
858 |
Seismic noise surveys in the area of Etna volcano (southern Italy).
|
861 |
S. Hailemikael1, D. Famiani1, G. Milana1, G. Tusa2, M. Paratore2, G. Brunelli3, R. Azzaro2
|
861 |
1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy.
|
861 |
2 Istituto Nazionale di Geofisica e Vulcanologia, Catania, Italy.
|
861 |
3 Istituto Nazionale di Geofisica e Vulcanologia, Milan, Italy.
|
861 |
Fig. 1 Map of investigated sites
|
863 |
Fig. 2 Azimuthal variation of H/V functions at selected nodal stations of the passive array survey carried out at Nicolosi (ENIC) monitoring site.
|
863 |
Fig. 3 Rayleigh and Love wave dispersion curves from RTBF analysis of the passive array data collected at Nicolosi (ENIC) seismic monitoring site.
|
864 |
S. Imposa1, S. Grassi1, G. Morreale1, C. Pirrotta1, L. Cavalier2, A. Gilotti3, D. Giuliano4, E. Cayre5, L.M. Caliò6
|
865 |
1 Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
|
865 |
2 Unité mixte de Recherche Ausonius (UMR 5607), Université Bordeaux-Montaigne, Pessac, France 3 Greensol S.R.L., Syracuse, Italy 4 Department of Cultures and Society, University of Palermo, Palermo, Italy 5 Post-doc researcher, Grand Programme de Recherche Human Past, Université de Bordeaux, Talence (France)
|
865 |
6 Department of Human Science, University of Catania, Catania, Italy
|
865 |
Characterizing groundwater springs in the Italian Alps: an integrated geological, geophysical, and hydrogeological approach
|
871 |
Acknowledgments
|
873 |
D. Melegari1, G. De Donno1, E. Piegari2
|
875 |
1 DICEA (Sapienza - University of Rome, Rome, Italy)
|
875 |
2 DISTAR (Federico II - University of Naples, Naples, Italy)
|
875 |
Fig. 1 – Aerial image (a) and plan (b) of the municipal solid waste landfill in Central Italy, with the location of the four investigated ERT/IP lines (L1-L4) and of the five piezometers (P1-P5)
|
876 |
M. Pavoni 1, J. Boaga 1, A. Bast 2,3, Lichtenegger 2,3, J. Buckel 4
|
883 |
1Department of Geosciences, University of Padova, Padova, Italy.
|
883 |
2WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland.
|
883 |
3Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland.
|
883 |
4Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany.
|
883 |
G. Penta de Peppo1, M. Cercato1, G. De Donno1
|
888 |
1 “Sapienza” University of Rome – DICEA
|
888 |
A. Perrone1, J. Bellanova1, G. Calamita1, F. Falabella2, M.R. Gallipoli1, E. Gueguen1, A. Pepe2, S. Piscitelli1, V. Serlenga1, T.A. Stabile1
|
895 |
Fig. 1 – Map of Gorgoglione test site (Basilicata region, southern Italy) with location of the in-situ geophysical measurements carried out in the urban area.
|
896 |
G. Romano1, L. Capozzoli2, V. Lapenna2, M. Polemio3
|
898 |
Fig. 1 - The proposed geophysical approach for characterizing coastal areas of SUBGEO
|
900 |
Integrated GPR and FDEM to detect brines pockets in Continental Antarctica
|
901 |
I. Santin1, E. Forte1, M. Guglielmin2
|
901 |
1 Department of Mathematics, Informatics and Geosciences (University of Trieste, Italy)
|
901 |
2 Department of Theoretical and Applied Science (University of Insubria, Italy)
|
901 |
Fig. 1 – (A) Location map of CALM grid and Lake n.16 (light blue square) in Boulder Clay Glacier area (MZS: Mario Zucchelli Italian Station). (B) Ortophoto with superimposed the GPR profiles, in white, and the FDEM survey, in red. Yellow lines mark the position of the gravel landing strip.
|
902 |
Fig. 2 – Apparent conductivity map down to a nominal depth of 2.5 m on Lake n.16. Red dotted line marks the path of the FDEM survey, while the blue triangle the location of borehole BC1 (taken from Azzaro et al., 2021).
|
903 |
Fig. 3 – Exemplary GPR profiles on Lake n.16 (A, B) and on CALM grid (C, C’, C’’), both represented with white lines. C’ and C’’ display dominant frequency and chaos attributes, respectively, of profile C. Yellow dot marks the crossing point between A and B. Location of each GPR profile is highlighted by a coloured line: C, C’, C’’ with a blue line, while A and B with pink and magenta lines, respectively. Pink triangle marks the location of BC1.
|
904 |
A. Signora1, S. Galli1, F. Dauti1, A. L. Sullivan1, A. Lucchelli1, M. Gisolo2, G. Fiandaca1
|
909 |
1 The EEM Team for Hydro & eXploration, Department Of Earth Sciences “Ardito Desio”, Università degli Studi di Milano, Milano (Italy)
|
909 |
2 A2A Ciclo Idrico S.p.a. , Brescia (Italy)
|
909 |
EEMstudio: processing and modelling of electric and electromagnetic data in a QGIS plugin
|
916 |
N.A.L. Sullivan1, A. Viezzoli2, G. Fiandaca1
|
916 |
Introduction
|
916 |
QGIS Widget
|
917 |
Fig. 1 – QGIS main window with EEMstudio widget on the right, used for management of processing and modelling files. Once uploaded, the coordinates of the acquisition points are automatically added to the QGIS layer, among eventual other layers in the QGIS project. In this figure, two types of data are shown: galvanic and inductive (airborne). White dots are the electrodes, red circles and blue points are the positions of the quadrupoles used in the soundings selected in the galvanic processing app (Figure 2a). Black dots are the inductive soundings and yellow points are the soundings highlighted in red in the inductive processing app (Figure 2b).
|
917 |
Processing
|
917 |
Fig.2 – Processing window supporting a) galvanic data visualization b) inductive data visualization. In galvanic window, first section: electrode position; second section: data pseudosection; third section: model of rho0; fourth section: model of phi; right panel: IP decay for the selected quadrupoles in the pseudosection. In inductive window, first section: flight altitude; second section: data (blue dots); third section: model of rho0; first left panel: decay in correspondence of the red highlights in the sections; models of rho0 in correspondence of the red highlights in the sections.
|
918 |
Modelling
|
919 |
Fig3 – Modelling windows. a) Interface to gather all necessary files to launch easily inversions with EEMverter (Fiandaca et al. 2024). b) Model Builder, to build synthetic models. From left to right: table with the parameters and the associated colors, widgets to change the grid, grid where it’s possible to select the cells and assign a color, 1D model of the row marked in blue on the bottom of the grid.
|
919 |
Conclusions
|
919 |
Acknowledgments
|
920 |
References
|
920 |
Denser is better? Spatial sampling vs trace stacking in multichannel GPR data to improve sections and depth-slices readability for archaeological prospections.
|
926 |
Vergnano1, C. Comina1
|
926 |
1 Università degli Studi di Torino, department of Earth Sciences; Torino, Italy
|
926 |
Fig. 1 – Comparison between 1.25 m depth-slices from 3D data volumes created using 6 different subsets of the total 32 channels of the Stream C: : upper panels) all the 32 channels, VV+HH (spacing about 3 cm), only the VV channels (spacing about 4 cm), only the HH channels (spacing about 10 cm); lower panels) different subsets of the VV channels with spacing of about 12, 25 and 50 cm respectively.
|
928 |
Fig. 2 – Comparison between GPR sections before and after stacking. a1): after dewow, move startime, and background removal. a2): a1) + stacking of adjacent 5 channels. An energy decay gain filter was then applied to both sections to allow for meaningful visual readability.
|
929 |
Fig. 3 – a) Comparison between a 60 cm depth-slice from Tindari test site, a1): non stacked, a2) stacked with 5 channels. b) as a), but at 40 cm depth.
|
930 |
33_Abstract_GNGTS2024.pdf
|
934 |
GNGTS 2024
|
934 |
APPLIED GEOPHYSICS FOR ENERGY, ENVIRONMENT AND NEW TECHNOLOGIES
|
934 |
S. Berti1,2, M. Aleardi1, E. Stucchi1
|
936 |
1 Department of Earth Sciences (University of Pisa, Italy)
|
936 |
2 Department of Earth Sciences (University of Florence, Italy)
|
936 |
R. Carluccio1, I. Nicolosi1, F. D’Ajello Caracciolo1, L. Minelli1
|
948 |
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV)
|
948 |
J. Chen1, G. Fiandaca1
|
953 |
1The EEM Team for Hydro & eXploration, Department of Earth Sciences "Ardito Desio", University of Milano, Milano (Italy).
|
953 |
Acknowledgments
|
957 |
G. Fiandaca1, B. Zhang2, J. Chen1, A. Signora1, F. Dauti1, S. Galli1, N.A.L. Sullivan1, A. Bollino1, A. Viezzoli3
|
961 |
Introduction
|
961 |
Method and results
|
961 |
Acknowledgments
|
966 |
References
|
966 |
S. Galli1, F. Schaars2, F. Smits3,4, L. Borst5, A. Rapiti6, G. Fiandaca1
|
968 |
1 The EEM Team for Hydro and eXploration, Dep. of Earth Sciences A. Desio, Università degli Studi di Milano, Milano (Italy)
|
968 |
2 Artesia Water, 2871 BP Schoonhoven (The Netherlands)
|
968 |
3 Waternet, 1096 AC Amsterdam (The Netherlands)
|
968 |
4 Technical University of Delft, 2628 CD Delft (The Netherlands)
|
968 |
5 PWN, 1991 AS Velserbroek, (The Netherlands)
|
968 |
Figure 3. Comparison between Borehole#8 log (yellow star in Fig. 3) and inversion model. Left – AGMS joint inversion; right – AEM-only inversion. Blue lines – inversion model; black lines – resistivity logs; red lines – rejected data in resistivity log in the joint AGMS inversion.
|
973 |
F. Macelloni1, M. H. Altaf1, M. Aleardi1, E.M. Stucchi1
|
978 |
1 Department of Earth Sciences, University of Pisa, Pisa, Italy
|
978 |
Fig. 3 – a) Observed seismogram; b) seismogram computed from the mean model of the prior distribution; c) predicted seismogram; d) difference between observed and predicted seismograms.
|
983 |
a Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo
|
986 |
Fig. 1 – Schematic arrangement of the whole instrumentation deposited at the bottom of the c.p. D (a). In (b) and (c) a focus on the centering disc supporting the digitizer.
|
988 |
Fig. 2 – Seasonal and whole period PSD’s for the three components. All the curves are reported in grey, while the mean one is color-coded. Peterson reference curves in black.
|
989 |
Fig. 3 – “On demand” interface. In (a) the dialog box. In (b) the spectrograms (on the left) and the Power Spectral Density (on the right) for the three components. In (c) the signal polarization polar histogram and in (d) the amplitude spectra (on the top) and the horizontal-to-vertical spectral ratio (on the bottom).
|
990 |
J. B. May1, P. Bird2,1, M. M. C. Carafa1
|
993 |
1 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy
|
993 |
2 Department of Earth, Planetary, and Space Sciences, UCLA, U.S.A
|
993 |
Table 1: Searched models with improved Geometric mean score when compared to Earth5-049.
|
996 |
Felipe Rincón1, Sean Berti1,2, Mattia Aleardi1, Eusebio Stucchi1
|
1000 |
1 University of Pisa, 2 University of Florence
|
1000 |
A. Signora1, G. Fiandaca1
|
1013 |
1 The EEM Team for Hydro & eXploration Dep. Of Earth Sciences A. Desio, Università degli Studi di Milano, Via Botticelli 23, Milano (Italy)
|
1013 |