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The session is focused on the theoreBcal and methodological development in geophysics. 
Novel approaches and new techniques related to digital data (seismic, electromagneBc, 
potenBal field) processing as well as the results of their applicaBon to specific case 
studies fit this session. ContribuBons that present innovaBve acquisiBon procedures 
(remote, superficial and in-situ), treatment, inversion and integraBon of geophysical data 
and mulBphysics numerical modeling are accepted in this session. The session promotes 
mulBdisciplinarity and encourages the disseminaBon, comparison and technological 
transfer of innovaBve methods and technologies in the enBre geophysical community. 
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Wavelet transform spectral analysis to esBmate 
the depth of gravity and magneBc sources 

M.A. Abbas1,2, M. Milano1, D.F. Barbolla3, M. Fedi1  
1 University of Naples Federico II, Naples, Italy 
2 South Valley University, Qena, Egypt 
3 Ins@tute of heritage Science - Na@onal Research Council, Lecce, Italy 

Spectral analysis, which is based on the Fourier Transform, allows high-resoluBon analysis in the 
frequency domain but not in the space domain. Due to this lack of spaBal resoluBon, well-known 
approaches such as Spector and Grant's method cannot provide informaBon on the source 
posiBons. We propose to address these concerns by employing a scalogram analysis, which is 
achieved by study potenBal fields throughout the conBnuous wavelet transform. It allows 
detecBon and locaBon of source contribuBons in the scalogram, with good resoluBon at both 
spaBal and wavenumber level. As a new tool, we study here the depths to the top and boLom of 
the potenBal field sources locally on the 3D scalogram, along delimited sub-volumes, subareas, 
and scale-profiles. When such local spectral analysis is applied to syntheBc data, the results are in 
good agreement with the informaBon of the causaBve sources. We also apply the method to real 
aeromagneBc data of the Monte Vulture, Southern Italy. 

Corresponding author:    mahmoud.abbas@unina.it 
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PROBABILISTIC APPROACH TO FULL-WAVEFORM 
INVERSION OF SURFACE WAVES: A REAL DATA 
APPLICATION 

S. BerB1,2, M. Aleardi1, E. Stucchi1 

1 Department of Earth Sciences (University of Pisa, Italy) 
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IntroducBon 
Surface waves play a crucial role in near-surface geophysics, offering a non-invasive way to 
determine the elasBc properBes of near-surface sediments: this turns out to be of fundamental 
importance, for example, for geotechnical site characterizaBon. This analysis started with the 
spectral analysis of surface waves (SASW) and became increasingly popular aWer the introducBon 
of the mulBchannel analysis of surface waves (MASW). The main limitaBon of these approaches is 
the reliance on a 1D layered model assumpBon, making them less effecBve in the presence of 
substanBal lateral heterogeneity or when dealing with mulBmodal dispersion paLerns in the 
context of low-velocity layers and strong velocity contrasts.  
The advent of increased computaBonal power in recent decades has made it possible the 
applicaBon of the full-waveform inversion (FWI) approach, which exploits the full informaBon 
content of the recorded seismogram to infer high-resoluBon esBmaBons of subsurface acousBc or 
elasBc parameters. While acousBc FWI is commonly employed for imaging complex subsurface 
structures, it falls short in near-surface seismic studies due to the prevalence of surface waves. In 
this work, our focus shiWs to mulBparameter elasBc FWI, aiming to construct P-wave and S-wave 
velocity models for near surface sediments. The inclusion of surface waves in the wavefields 
increases the nonlinearity of FWI, elevaBng the risk of the local approach geZng stuck in some 
local minima of the usual L2 norm error funcBon. In this context, the inversion outcomes become 
strongly dependent on the starBng model. Although global opBmizaBon methods can miBgate this 
issue, they come at the cost of significantly increased computaBonal demands (Lamuraglia et al. 
2022).  
Trying to overcome these issues, we propose a Bayesian inference framework for elasBc FWI. 
Differently from the local approach, the proposed method provides a comprehensive evaluaBon of 
the uncertainty affecBng the retrieved soluBon through the so-called posterior probability density 
funcBon (PPD) in the model space. Based on the Bayes theorem, the PPD incorporates the 
informaBon coming from both the prior knowledge on the model parameters and the recorded 
seismic data but, in case of nonlinear forward modelling, a sampling technique needs to be 
adopted to approximate this density funcBon. In our case a Markov Chain Monte Carlo (MCMC) 
sampling strategy is used to numerically evaluate the staBsBcal properBes of the PPD. However, 
challenges arise in the form of the convergence rate dependency on the proposal distribuBon and 
the diminished sampling ability in high dimensional spaces, known as the curse of dimensionality. 
To tackle these issues, we introduce a gradient-based Markov Chain Monte Carlo (GB-MCMC) 
method where the proposal distribuBon is constructed by the local gradient and the Hessian of the 
negaBve log posterior, and we also reduce the dimensionality of the problems making use of the 
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Discrete Cosine Transform (DCT) reparameterizaBon. This approach is applied to a real dataset, 
acquired in the framework of the InterPACIFIC project at the test site of Grenoble (France, Garofalo 
et al. 2016). 

Method 
The method we employed is the same described in BerB et al. (2023) and applied to solve the 
acousBc FWI, but in the present study the method has been extended to the elasBc case and 
validated on real data. For the sake of brevity, the theoreBcal descripBon of the method is not 
included here, and we refer the reader to BerB et al. (2023) for more details. In essence, our 
implemented MCMC method defines the proposal distribuBon as a localized approximaBon of the 
PPD by leveraging informaBon derived from the local gradient and Hessian of the negaBve log 
posterior computed around the current state of the chain. This significantly reduces the Bme 
requested by the algorithm to reach the steady state. The drawback of this procedure is that 
derivaBves need to be evaluated for each sampled model, posing computaBonal challenges when 
dealing with extensive model and data spaces. Therefore, a convenient strategy to reduce the 
computaBonal complexity of this inverse problem is to compress the model and data spaces 
through appropriate reparameterizaBon techniques, such as the DCT. The DCT of a signal reveals 
the energy distribuBon of the signal in the frequency domain spectrum. Typically, the majority of 
the signal’s energy is expressed by low-order DCT coefficients and consequently, this mathemaBcal 
transformaBon serves as a tool for model and data compression, achieved by seZng the 
coefficients of the base funcBon terms beyond a certain threshold equal to zero. The esBmaBon of 
the opBmal number of DCT coefficients needed to approximate the model and data spaces is a 
criBcal step of our inversion framework. For the seismic data, we have analyzed how the relaBve 
percentage error, calculated as the raBo between the L2 norm difference of the observed and 
compressed data and the L2 norm of the observed data, varies using different combinaBons of DCT 
coefficients; for the model space instead, we have used the available borehole data, invesBgaBng 
how the variability of the model, calculated as the raBo between the variance of the compressed 
and uncompressed models (Aleardi, 2021), changes with the number of retained DCT coefficients. 

Results 
To validate our proposed methodology, we applied the approach to a field dataset, acquired in 
Grenoble, France, as part of the InterPACIFIC project. Three in-line boreholes, spaced at 4.5m 
intervals, were drilled up to 50m depth. These available well-log data were used to validate the 
results obtained in our work. The dataset consists of three shot gathers, of which one is split-
spread and two are off-ends, recorded by 48 verBcal geophones with a spacing of 1 m and a 
natural frequency of 4.5 Hz. Pre-processing steps, including trace-by-trace amplitude normalizaBon 
and a zero-phase band-pass filter (3-30Hz), were applied to enhance data quality. Then, a 3D to 2D 
correcBon is needed to compensate for the geometrical spreading between the real case point 
source and the 2D forward modelling where line sources are implicitly used in the simulaBons. For 
generaBng our predicted data, we have constructed a grid with a size of 276(nx0) x 150(nz0), where 
nx0 and nz0 are the number of grid points in the horizontal and verBcal direcBon. The grid spacing 
is set to 0.25m in both direcBons, to avoid numerical dispersion in the finite difference modelling. 
The Bme sampling is 0.1ms for the forward modelling and the registraBon Bme is 0.5s. Both 
predicted and observed data were resampled to a 2ms Bme interval. The simulaBon of the shots is 
performed using SOFI2D (Bohlen, 2002), a viscoelasBc forward modelling code that solves the pure 
elasBc or viscoelasBc wave equaBon by a finite difference scheme in the Bme domain. The model 
parameters to be esBmated are the Vs and Vp values, and we are considering a homogeneous 
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constant model for the density. However, for brevity, only the Vs results will be discussed because 
this is notoriously the most informed model parameters when considering surface wave data. 
ParallelizaBon of the calculaBon of the Jacobian matrix across different servers was employed to 
reduce computaBonal costs. 
The seismic data and velocity models must be projected onto the DCT space, where the MCMC 
sampling runs. For the data, we have noBced that 60x45=2700 retained coefficients resulted in a 
relaBve percentage error with respect to the observed data lower than 8%, reducing the the full 
250x48x3=36000-D data space to a 60x45x3=8100-D domain (where are considering the same 
number of DCT coefficients for all the three shots). For the model space instead, 20 and 7 
coefficients along the two DCT spaBal dimensions explain more than 95% of variability of the 
model obtained extending the borehole data in the horizontal direcBon, reducing the 
150x276x2=82800-D elasBc space to an 20x7x2=280-D domain (i.e., we are considering the same 
number of DCT coefficients for both the Vp and Vs models). We need to point out that this 
compression not only reduces the dimensions of the vectors and matrices involved in the inversion 
procedure (such as the gradient and the Hessian), but also greatly reduces the number of forward 
evaluaBons needed to construct the Jacobian matrix and so, the overall computaBonal cost of the 
algorithm.  
The implementaBon used six cores on an Intel® Core™ i7-8700 CPU @ 3.20GHz. Each iteraBon, 
including compuBng the Jacobian, the gradient, the Hessian matrix and drawing a sample, takes 
approximately 8m wall clock Bme. A total of 4.000 iteraBons for a single chain required 
approximately 6 days. In our case we used five MCMC chains to sample the model space, which 
started from very simple two layered velocity models. Figures 1a and 1c show, respecBvely, one of 
the starBng models of the chains used for the GB-MCMC inversion and the posterior mean model, 
computed considering all the chains. The prior informaBon for the Bayesian inversion (prior mean 
vector and prior covariance matrix) are directly derived from the two layered model displayed in 
Figure 1a.  

 
Fig. 1 (a) One of the starBng models used for the GB-MCMC inversion; (b) Posterior standard deviaBon map; (c) 
Posterior mean Vs model considering the five chains; the dashed black line corresponds to the posiBon of the available 
borehole data; (d) The borehole data together with the velocity profile of the predicted model at the horizontal 
posiBon of 10m (black). 



Session 3.3                    GNGTS 2024

A comparison between the obtained results at the horizontal posiBon of 10m and the available 
borehole data revealed an accurate reproducBon of all the main velocity variaBons (Figure 1d). In 
parBcular, the two high velocity layers are clearly idenBfied at depths 10-15m and 19-25 m with a 
Vs value around 430 m/s. In between, there is a very thin layer (around 3m of thickness) 
characterized by a lower Vs velocity, around 370 m/s. We are also able to observe the velocity 
inversion around 25m of depth, at the boLom edge of the model. As expected, this velocity layer is 
also characterized by the highest standard deviaBon values (Figure 1b), considering that it is below 
the high velocity layer and at the edge of the model. We need to consider that the standard 
deviaBon map suggests small uncertainBes for all the velocity models (less than 40 m/s).  
In Figure 2a we can see the evoluBon of the negaBve log-likelihood for all the chains, and we can 
noBce that, aWer the end of the burn-in period, all the chains oscillate around the same values, 
meaning that we have reached the staBonary regime. Figure 2b shows the acceptance raBo for the 
five chains, calculated as the raBo between the number of accepted models and the number of 
iteraBons. We can see that all the values are very high, compared to the ones usually achieved 
with standard gradient-free MCMC methods (around 20%), highlighBng the superior efficiency of 
the proposed method. A comparison between the leWmost shot of the observed data (aWer pre-
processing) and the data computed on the starBng model of Figure 1a revealed significant cycle-
skipping, indicaBng that any local approach would fail in locaBng the global minimum of the error 
funcBon (Figure 3a). Differently, our approach finally provides a mean posterior model that is 
capable of successfully reproducing the observed seismic data (Figure 3b). This capability was 
emphasized by the close-ups of Figures 3c and 3d, in which we can appreciate the significant 
differences between the observed and iniBal data and how the cycle skips vanish when the data 
computed on the posterior mean model is considered. This means that the implemented approach 
could be also used to define an opBmal starBng model suitable for a subsequent step of local FWI. 

 

Fig. 2 (a) EvoluBon of the negaBve log-likelihood, which measures the misfit between observed and predicted data, for 
all the five chains and the end of the burn-in period (dashed black); (b) Acceptance raBo for all the five chains. 
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Fig. 3 (a) The leWmost shot of the observed data in black, compared against the data generated using one of  the 
starBng models (red); (b) Comparison between the same observed shot gathers (in black) and the data generated from 
the posterior mean model (in red); (c, d) Comparison of two seismic traces of the same shot of the observed data 
(green), the predicted data (red) and the iniBal data (dashed blue). 

Conclusions 
In this study we introduced a computaBonally efficient Bayesian elasBc FWI, leveraging a GB-
MCMC sampling technique along with a DCT compression applied to both the model and data 
spaces. The adopted MCMC strategy addresses the cycle-skipping problem affecBng the local FWI 
approach, uBlizing the local gradient and Hessian informaBon of the posterior density to guide the 
sampling towards the most promising regions of the model space. This results in a significant 
reducBon in computaBonal burden of the probabilisBc approach compared with standard gradient-
free MCMC algorithms. We demonstrated the efficacy of the GB-MCMC elasBc FWI applied to a 
field dataset, acquired in Grenoble. AWer pre-processing the seismic data in order to make it 
comparable with the data generated using the elasBc forward modelling, five Markov chains were 
employed to numerically assess the PPD, each one starBng from very simple iniBal models. The 
predicted posterior mean model accurately replicated all the verBcal velocity variaBons evidenced 
by the available borehole data. In addiBon, our model predicBon is also capable to closely match 
the observed seismic data, affirming the applicability and reliability of the proposed approach that 
can also be conveniently used to define a starBng point for a subsequent step of local inversion, 
aimed at enhancing the velocity model’s resoluBon and further minimize the difference between 
predicted and observed data. Our ongoing research focuses on opBmizing the overall 
computaBonal efficiency of our inversion procedure through the integraBon of deep learning 
techniques. 
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Full-decay spectral modelling of Bme-domain 
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        Direct current (DC) resisBvity and induced polarizaBon (IP) geophysical methods are widely 
used in geophysical near-surface invesBgaBons, gaining informaBon about subsurface conducBvity 
structures by injecBng electric currents into the ground and measuring electric voltages at different 
locaBons. The DC resisBvity method provides informaBon about the electrical conducBve 
properBes of the subsurface. In contrast, the IP method targets the capaciBve characterisBcs 
offering addiBonal insight into the physical and electrochemical nature of subsurface materials.  
The IP phenomenon has been widely invesBgated both in Bme (TDIP) and frequency (FDIP) 
domains, in the laboratory, or through field studies. The TDIP has been used for many years for 
disseminated ores and mineral discriminaBon (e.g. Vanhala and Peltoniemi, 1992; Seigel et al., 
1997, 2007). Over the last 20 years significant advancements in IP research have taken place, 
parBcularly with respect to the spectral content of the IP signal, which can be applied to 
engineering and environmental problems, such as the detecBon of contaminants and old landfills 
(e.g. Weller et al. 1999; Gazoty et al. 2012; Fiandaca et al., 2015; Johansson et al. 2015), and the 
derivaBon of grain size distribuBon parameters in unconsolidated sediments (e.g. Vanhala et al., 
1992, Kemna et al., 2004, 2012). 
    In the frequency domain, IP phenomena can be represented as a complex conducBvity (ω) 
that varies with frequency (ω), which can be expressed as: 

(ω)= ( )                                                                                        (1) 

where * denotes a complex term,  is the magnitude of conducBvity,  is the phase angle 

between injected current and measured voltage,  is the real component of conducBvity, 

( ) is the imaginary component of conducBvity,  is the angular frequency representaBon 

of frequency , and  (Binley, 2015). By neglecBng electromagneBc (EM) effects, the 

complex potenBal  is linked to the complex conducBvity through 
Poisson’s equaBon: 

                                                                                                (2) 

σ*

σ* |σ (ω) |eiφ(ω) = σ′ (ω) + iσ′ ′ ω

|σ (ω) | φ
σ′ (ω) σ′ ′ 

ω ω = 2π f
f i = −1

u*(ω) = u′ (ω) + iu′ ′ (ω)

∇ ⋅ j*S (ω, r) = ∇ ⋅ [σ*(ω, r)E*(ω, r)]

https://www.sciencedirect.com/science/article/pii/S0926985105000844%23bib19
https://www.sciencedirect.com/science/article/pii/S0926985105000844%23bib19
https://www.sciencedirect.com/science/article/pii/S0926985105000844%23bib7
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where  is the applied source current density, r = (x, y, z) is the spaBal locaBon, and  

−  is the complex electric field. 
In the Bme domain, Poisson’s equaBon is given as a convoluBon between the conducBvity and the 
electric field as a funcBon of the Bme t (e.g. Kemna, 2000): 

where  is the inverse Laplace transform of  and E(t, r) = −∇u(t, r). 
    As menBoned above, during the last two decades, significant advancements in induced 
polarizaBon research have taken place, parBcularly with respect to spectral IP (SIP) and its 
increasing applicaBon in near-surface invesBgaBons even if surveys are usually modelled by taking 
into account only the integral chargeability, thus disregarding spectral content and neglecBng the 
effect of the transmiLed waveform, biasing inversion results. In this context, following Fiandaca et 
al. (2012, 2013)’s approach, EEMverter has been developed to model IP in electric and 
electromagneBc (EM) data within the same inversion framework and where the forward response 
is computed in the frequency domain for all dimensionaliBes, solving the full version of Poisson’s 
equaBon, and then transformed into the Bme domain, thus avoiding the Bme-domain 
approximaBon (eq. 3).  Here, we will focus only on the galvanic aspects in EEMverter modelling, 
while the other modelling features of EEMverter, such as EM modelling, Bme-lapse and joint 
inversion of galvanic and EM data are treated in Fiandaca a et al. (2024). 
From a physical-mathemaBcal point of view, resisBvity and IP forward responses are modelled in 
the frequency domain for a range of frequencies using the finite element method. The responses 
are then transformed into the Bme domain for each quadrupole measurement and the 
transmiLed current waveform is applied. In 2-D, the FD forward response assumes an isotropic 2-D 
distribuBon of the complex conducBvity, neglecBng electromagneBc inducBon. Considering the 
complex conducBvity  at a given frequency  with a point source at the origin with 
(zero-phase) current I, the Poisson’s equaBon can be defined as follow: 

where  is the Fourier-transformed complex potenBal, λ is the Fourier transformaBon variable 
for the assumed strike (y) direcBon and δ represents the Dirac delta funcBon.  
Once the frequency domain potenBal  is computed, the Bme domain computaBon is carried 
out through a cosine/sine transform, solved numerically in terms of Hankel transforms, expressed 
in terms of Bessel funcBons of order -1/2 and +1/2, respecBvely (Johansen and Sørensen, 1979): 

                                                   (5) 

j*S E*(ω, r) =
∇u*(ω, r)

∇ ∙ js(t, r) = ∇ ⋅
∞

∫
0

σ (t′ , r)E(t − t′ , r)dt′                                                                                          (3) 

σ(t) σ*(ω)

σ*(x, z, ω) ω

∂
∂x (σ*

δσ*

δx ) +
∂
∂z (σ*

∂ϕ*

∂z ) − λ2ϕ*σ* = − Iδ(x)δ(z)                                                                           (4)

ϕ*

ϕ*

1
π

∞

∫
0

f (ω)cos sin (ωt)dω = r
∞

∫
0

f1(λ)λJ∓ 1
2
(λr)dλ
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Where ,  and . 

Finally, the Bme-domain IP decay is computed as the convoluBon of the impulse response with the 
current waveform  between the electrodes, solved as proposed by FiLerman and Anderson 
(1986) for piecewise linear current waveforms. 

EEMverter is implemented in such a way that the inversion parameters are defined on the nodes 
of the model mesh and migrated to the forward mesh through interpolaBon (that can be chosen 
and selected by the user). The spaBal decoupling between model and forward meshes allows for 
defining the model parameters, e.g., the Cole-Cole (Cole and Cole 1941; Pelton et al. 1978) ones, 
on several model meshes, one for each inversion parameter, for example. 
For each dataset of the inversion process, a disBnct forward mesh is defined. The interpolaBon 
from model parameters M into the values mi is expressed through a matrix mulBplicaBon: 

                                                                                                                         (6) 

in which the matrix  holds the weights of the interpolaBon that depends only on the distances 
between model mesh nodes and the subdivisions of the ith forward mesh (Fiandaca et al., 2024). 
As for the forward response, the Jacobian matrix is computed in the frequency domain and then 
transformed into the Bme domain. The Bme-domain Jacobian in the ith forward mesh is computed 
as: 

                                                                                                                         (7) 

where the matrix 𝑻 holds the Hankel coefficients, the matrix 𝑨 implements the effects of current 

waveform, gate integraBon and filters and the frequency-domain Jacobian  is calculated in 1-

D through finite difference and in 2-D/3-D using the adjoint method and the chain rule as in 
Fiandaca et al. (2013) and Madsen et al. (2020), thus allowing to use any parameterizaBon of the 
IP phenomenon in the inversion: 

where  is the Jacobian of the ith forward mesh with respect to the complex conducBvity  

and  is the parBal derivaBve of the complex conducBvity versus the model parameters 

(Fiandaca et al., 2024). 
The Levenberg-Marquardt linearized approach is used for compuBng the inversion model: 

  

(8) 

r = t 2π λ =
ω

2π
f1(λ) =

1

λ
f ( λ

2π )
i(t)

mi = fi(M ) = Fi ∙ M

Fi

Jmi,TD = A ∙ T ∙ Jmi,FD

Jmi,FD

Jmi,FD = Jσ*,i ∙
∂σ*

∂mi

                                                                                                                                              (7)

Jσ*,i σ*
∂σ*

∂mi

Mn+1, j = Mn, j + [JT
M, jC

−1
d JM,i + RTC−1

R, Rj + λI]−1 ∙ [JT
M, jC

−1
d ∙ (d − fn, j) + RTC−1

R, jRj ∙ Mn, j]
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where the subscript j indicates that the inversion process can be split in different inversion cycles: 
in each cycle j it is possible to change the forward computaBon for each dataset (e.g., from 1-D to 
3-D), as well as to insert/remove data/constraints from the objecBve funcBon (Fiandaca et al., 
2023). 
    However, when using the resisBvity and IP method to map subsurface geological structures with 
complex geometries, 1-D and 2-D inversion schemes are not always sufficient and 3-D modelling 
and inversion of the data are required.  For this reason, EEMverter is also developed for 3-D 
inversion, following Madsen et al., (2020). To discreBze the 3-D problem, a combined triple-grid 
inversion approach (presented by Günther et al. 2006) is adopted: a coarse tetrahedral mesh is 
used for the inversion (the model mesh) and two finer discreBzed tetrahedral meshes (one for the 
primary potenBal field and one for the secondary potenBal field) are used to compute the forward 
responses, balancing the modelling accuracy, the computaBonal speed and memory usage. The 
results of the 2-D implementaBon on syntheBc and field data, as well as the 3-D implementaBon 
under development, will be presented at the conference. 
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Standard seismic networks typically use absolute arrival Bmes of specific seismic phases to esBmate source 
locaBons. In this context, mulBple sensors are posiBoned over a monitored area, aiming to minimize the 
azimuthal gap to known seismicity clusters. Distributed AcousBc Sensing (DAS) technology, which converts 
fiber opBc cables (FOCs) into very dense seismic arrays, is nowadays used for similar purposes. DAS has the 
addiBonal advantage of being able to exploit preexisBng telecommunicaBon FOCs (Telecom-FOCs). 
However, since the original installaBon purpose for Telecom-FOCs doesn’t align with seismological needs, 
the spanned azimuthal direcBons can be limited. Hence, relying on absolute arrival Bmes for event locaBon 
might result in uncertain locaBons, given poor waveform moveouts and site-specific sources of noise in the 
data. Nevertheless, the intrinsic DAS channels’ spaBal density provide a good opportunity to test mulB-
channel cross-correlaBon techniques. Here, to assess the potenBal benefit from using differenBal arrival 
Bmes for event locaBon, we cross-correlate all possible DAS channel pairs and idenBfy P-wave Bme delays. 
We focus on well-known test environments (i.e., known event locaBons) and  use a Hamiltonian Monte 
Carlo algorithm to esBmate hypocentral parameter uncertainBes, considering both absolute and differenBal 
arrival Bmes. We demonstrate how differenBal arrival Bmes beLer constrain the events' azimuthal 
direcBons compared to absolute arrival Bmes. However, computaBonal costs are inevitably higher due to 
the significant increase in data points when considering all the P-wave delays. A miBgaBon to this issue is 
reached by selecBng measurements based on thresholds for the minimum cross-correlaBon index and 
maximum interchannel distance. This work illustrates how to potenBally alleviate DAS geometrical 
limitaBons on event locaBon by exploiBng selected differenBal arrival Bmes.  
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One of the most commonly used applicaBons of potenBal fields in geophysics is the measurement 
of field anomalies in order to produce regional maps. These anomalies are in fact due to 
anisotropies in terrain geology and can give indirect informaBon on underground layers/structures. 
In the magneBc field case, anisotropies are mainly due to differences in magneBc suscepBbility and 
to the presence of magneBsed material (remanence) in  the underlying structures. 
MagneBc anomaly maps are usually realised scanning the area of interest with a sensible 
magnetometer, usually following a parallel, equally spaced lines paLern properly oriented with 
respect to North.  
Areas of interest can generally scale over orders of magnitude ranging from regional (thousands of 
square kms) to hundreds of square meters. Up to recent years this kind of measure has mainly 
been done either with airborne measuring systems,  airplanes or helicopters or by walking on the 
ground in small areas. With the advent of UAV systems a series of intermediate targets have 
become possible since low alBtude,  square kilometres orders surveys, even on impracBcable (by 
man) wild areas could be easily managed in a fracBon of Bme. 
In the case of UAVs, however, there are some technical aspects that arise regarding the magneBc 
anomaly measure. The magnetometers required for these measurements are usually protons 
precession or opBcal pumping total field units, which are heavy and impracBcal as UAV payloads, 
weighing several kilograms. However, they are necessary because the anomalies being searched 
for can oWen be as low as a few nanotesla, which is five orders of magnitude less than the average 
Earth magneBc field. Fluxgate magnetometers are small and sensiBve enough for this task, but 
they are difficult to use. Even if they can achieve the required sensiBvity, they only measure the 
magneBc field component along their symmetry axis. In a moving frame, the only way to obtain a 
meaningful measurement is to mount three of them in an orthogonal frame (creaBng a tri-axial 
unit) and calculate the magneBc total field based on those readings. However, this procedure is 
affected by several factors, including: 1) the calibraBon of the three units in terms of their response 
funcBon to the magneBc field and external temperature, 2) the orthogonality of their axes, and to 
a lesser extent, 3) the mutual interacBon of the three sensors in space. It can be demonstrated 
that these factors can result in an error in the calculated total field that is much larger than the 
precision requirements menBoned earlier, unless a thorough and challenging calibraBon is 
performed for each individual unit.     
Only in recent months however a new family of opBcal pumped miniaturised magnetometers have 
become available. They have furthermore characterisBcs comparable to their big-sized relaBves.   
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On the basis of this new technology we have designed from scratch and realised a flying payload 
mounted in an aerodynamic “rocket-shape” towed assembly. Our system core is a new opBcally 
pumped micro magnetometer from QSPIN, the Total-Field Magnetometer (QTFM). Along with this 
sensor the system has GPS posiBoning system running at 10 Hz, 9- DOF IMU unit for aZtude and 
heading reference, barometer and thermometer for indirect absolute alBtude measuring, laser 
alBmeter (up to 50 m) for direct terrain clearance (AGL) measure.  
All of these data are acquired along with milliseconds onboard processor clock for post processing 
data resync. Data is read from sensors synchronous to the magneBc measure acBng as master sync 
and stored on a local repository. 
A bi-direcBonal radio link has also been implemented in order to communicate to a ground based 
staBon through LORA (Long Range) signal modulaBon. It ensures radio connecBons over long 
ranges even with very low antenna RF power through the use of a redundant and compressed data 
modulaBon scheme. This is important to maximise efficiency with respect to onboard baLery 
weight. The enhanced efficiency is however payd on data bandwidth: for our system setup a 
maximum of about 22 bytes/second are allowed for connecBon nominal distances of  5 kilometres 
and few mW in TX. 
Over this link a binary compacted subset of survey measurements is transmiLed to a base staBon: 
the subset ensures the issue of a magneBc data map rendered on a laptop for real Bme quality 
check of survey progression. Even if magneBc data is transmiLed to the base staBon in a 
simplified-rounded way for bandwidth opBmisaBon it can nonetheless act as data backup in the 
unlikely cases of on-board log failure. 
It is also possible to remotely control the system through a handshake (ready to send status - 
acknowledge) protocol to change some survey parameters: measurements frequency (future 
feature), control of recording status and of recording parameters setup for differenBal barometric 
alBtude measurement. 
Fig. 1 shows the magnetometer rocket-shaped system (bird): all of the electronics are in the nose 
of the bird running around an arduino-like powerful 32 bit microcontroller. The actual sensor is 
instead put farthest from the electronics and from the baLery in order to minimise unwanted 
magneBc noise: it is in the bird tail, inside the wooden ailerons holder. Apart from the electronic 
components, the bird is in fact enBrely made of non-magneBc materials and during flight it is 
towed by the UAV with a 10 metres rope.  
The system has been conceived to be independent from the AUV host pla�orm. It is furthermore 
very light weighBng about 1kg, baLery included. It is very economical if compared with similar 
commercial systems. It is low energy consuming: a ~5000 mAh USB power pack gives 2-3 hours of 
autonomy. The actual implementaBon of the system has demonstrated to fly stable in moderate 
velociBes even with some wind condiBons. Future improvements foresee the implementaBon of 
an acBve stabilisaBon system to minimise bird pendulum-like oscillaBons for low velocity situaBons 
and/or caused by wind turbulence.  
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Fig. 1 – Bird towed by UAV with  10m cable with parBcular images showing operaBonal parts and sensors. 
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Fig. 2 – Base staBon LORA radio link together with a screengrab of the beta release of the real-Bme  mapping soWware. 
Upper part of the soWware screen, from leW to right: text dump of decoded data stream from the remote sensor, 
realBme geo-referenced map of survey raw data, adapBve and opBmised real-Bme paleLe of magneBc field and 
messages flag signals. Lower part: moving chart of last 100 magneBc field measurements. 

Fig. 2 is the base staBon system consisBng of a LORA transceiver and binary packet demodulator 
USB connected to a laptop for real-Bme survey map rendering 
Fig. 3 Shows processed a magneBc anomaly map of Campo Felice extensional basin, Abruzzo, 
central Italy, obtained from around 3-hour of UAV flight and a total profile length of 90 km. From 
post-flight analysis of measured data we have furthermore confirmed the reported sensor heading 
error to be less than 2 nanotesla.  
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Fig. 3 – Reduced-To-the-Pole magneBc anomaly map of Campo Felice Plain displayed using a nonlinear intensity color 
scale and contour lines. 

Conclusions 
To recap, UAV-based surveys fill the gap between large-area airborne-based and ground-based 
magneBc surveys conducted by humans. In addiBon to the obvious advantage of being able to 
cover inaccessible areas, UAV surveys actually provide the highest resoluBon for geophysical 

surveys and open up new possibiliBes for local geological interpretaBon. 
They have advantages over ground-based surveys, which in theory could 
offer greater resoluBon but are hindered by their close proximity to 
superficial sources that can potenBally produce a dominant signal and 
obscure geological features. Man-based surveys also suffer from terrain 
topography and sensor oscillaBons caused by walking, which introduce 
external noise. In contrast, UAVs can fly at an opBmal minimum distance 
to maximise the spaBal resoluBon of the geologic signal by following a 

smooth linear path that minimises external noise.  
For example, we have successfully tested our system in different geological seZngs, such as 
intramontane Apenninic basins or mud volcanoes in Sicily, in order to characterise the subsurface 
geometry.  
The QR code here reported points to the Youtube URL of a video showing one of the very first 
surveys conducted with the system that has been described. 

Corresponding author:    roberto.carluccio@ingv.it 
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Abstract 
The towed transient electromagneBc (tTEM) can conduct efficient geological surveys on the near-
surface of about 100 meters underground. Exploring fast and accurate on-site interpretaBon 
strategies for electromagneBc data is crucial for geoscienBsts and engineers to make high-quality 
decisions and further enhance the applicability of this technology. In this study, we designed a 
composite probabilisBc neural network (cPNN) structure that can simultaneously provide 
determinisBc imaging and Bayesian probabilisBc imaging results, providing a comprehensive 
interpretaBon of the observed data and esBmaBng its uncertainty. We verified this neural network 
with nearly 200 km tTEM survey data collected on the Iseo Lake in Italy. The results show that the 
cPNN network can effecBvely characterize the locaBon of aquifers and underground clay layers, 
and the imaging results are consistent with convenBonal inversion and sonar bathymetry data. 
Furthermore, since the cPNN network can obtain the Gaussian distribuBon of underground 
resisBvity, we can esBmate the depth of invesBgaBon (DOI) of the imaging results and extract 
smooth models from the Gaussian distribuBon. The cPNN network can obtain approximate 
Bayesian inversion results for large tTEM dataset in only tens of seconds on a laptop, which has 
good pracBcal value. 

I IntroducBon 

The towed transient electromagneBc (tTEM) is a new detecBon technology improved on the basis 
of the ground-based transient electromagneBc (TEM) method in recent years. This technology 
enables mobile geological surveys with all-terrain vehicles (Auken et al., 2019) or boats (Maurya et 
al., 2022), similar to the ground-based version of airborne transient electromagneBc (ATEM)  
technology (e.g. Silvestri et al., 2019).  The survey speed of the tTEM system can reach nearly 20 
kilometers per hour (Grombacher et al., 2021), and it can conduct efficient and low-cost geological 
surveys in large survey areas, with a typical depth of invesBgaBon (DOI) ranging from 80 to 100 
meters. 

At present, the tTEM has been successfully applied in various near-surface geological exploraBon 
fields such as agricultural ecological management, groundwater hydrology system mapping 
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(Grombacher et al., 2021), and groundwater vulnerability assessment (Sandersen et al., 2021). 
When carrying out large-scale exploraBon tasks, it is important for equipment operators to view 
the imaging interpretaBon results of the detecBon data, which is conducive to their on-site 
judgment of geological characterisBcs and instrument working status, so as to make high-quality 
decisions. 

In recent years, a large number of studies have demonstrated the feasibility of deep learning 
algorithms in real-Bme imaging of TEM data (Colombo et al., 2021; Chen et al., 2022).  These 
studies established a specific mapping between the exploraBon data and the resisBvity parameter 
space based on deep neural network (DNN) frameworks. However, due to the ill-posedness and 
mulB-soluBon nature of the geophysical electromagneBc inverse problem, the same exploraBon 
data can have mulBple or infinite different geological model soluBons. This one-to-many mapping 
relaBonship brings great training difficulty to the deep learning network and also affects the 
reliability of applying deep learning networks to interpret TEM data. 

In this context, the development of probabilisBc neural networks (PNN) has provided an effecBve 
soluBon to the nonlinear inversion problems in geophysics. The currently typical PNN structures 
include mixture density networks (MDN) and inverBble neural networks (INN). MDN can learn to 
map a vector to an n-dimensional condiBonal probability distribuBon and parameterize it as a 
Gaussian mixture model (GMM) to learn arbitrary probability distribuBons (Mosher et al., 2021). 
INN can learn the bidirecBonal mapping between inputs and outputs, and it can esBmate the 
posterior probability density funcBon (PDF) by introducing addiBonal latent variables on the 
output side. Both of these network structures can effecBvely simulate Bayesian posterior inference 
and have been successfully applied in geophysical inversion methods. 

Inspired by the outstanding research menBoned above, we propose a composite probabilisBc 
neural network (cPNN) structure that incorporates the LSTM autoencoder network with both DNN 
and MDN network structures.  This design allows for simultaneous determinisBc imaging and 
probabilisBc esBmaBon of tTEM data. Furthermore, we are able to evaluate the depth of 
invesBgaBon (DOI) through the resisBvity Gaussian distribuBon output by the cPNN network. 

II Bayesian imaging framework 

As shown in Fig. 1, the Bayesian imaging framework based on the cPNN mainly includes three 
stages: data generaBon, network construcBon and training, and imaging result output. In the data 
generaBon stage, input data and label data for the enBre network structure need to be prepared, 
including TEM response data and the corresponding theoreBcal resisBvity model. In this study, 
considering the computaBonal complexity caused by high-dimensional layer models and the 
superior shallow subsurface detecBon resoluBon of ground-based TEM compared to ATEM, the 
number of model layers is set to 30. We generated 30 depth interfaces within a range of 120 m 
underground using a log increasing with depth method. The last layer is assumed to be a semi-
infinite half-space.  

In the stage of imaging result output, the difference between MDN and convenBonal neural 
networks is that MDN outputs a condiBonal probability distribuBon, and it can learn arbitrary 
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probability distribuBons through Gaussian Mixture Models (GMMs). Taking TEM inversion as an 
example, suppose we have N training datasets R={(di, mi): i = 1, …, N}, where d and m represent 
the input space of TEM data and the output space of resisBvity model parameters, respecBvely. 
Given an input di, if the trained resisBvity model set mi saBsfies a prior probability density funcBon 
distribuBon, the structure of a convenBonal neural network will output the corresponding mi by 
minimizing the sum of squared errors on the set R. This output result will approximate the mean 
soluBon of the Bayesian posterior distribuBon p(m| d) (Earp et al., 2020). In contrast, MDN can 
directly output an esBmate of the Bayesian posterior distribuBon p(m| d).   

III cPNN network inversion results 

The cPNN inversion has been tested on a FloaTEM survey carried out on the south shore of the 
Iseo lake to study the lake-groundwater interacBon (Fig. 2), we carry out a waterborne tTEM (or 
FloatTEM) survey with a total survey line length of approximately 200 kilometers and a total of 
nearly 35,000 survey points (Galli et al., 2024). When carrying out measurements with the 
FloatTEM system, we installed a sonar sounding device on the boat to measure the bathymetry.  

We compared the inversion results of the deep learning cPNN network with those based on the 
EEMverter (Fiandaca et al., 2024) modelling pla�orm. The number of inversion layers and layer 
thickness are consistent with the deep learning training parameters.  As shown in Fig. 3, both the 
DNN inversion results and the MDN inversion results output by the cPNN network similarly depict 
the hydrological characterisBcs under the Iseo lake, and its imaging results of the underground clay 
layer and underground aquifer are in good consistency with the inversion results of EEMverter. The 
gray grid in the figure is the bathymetry informaBon of the lake water. It can be clearly seen that 
the imaging results of the cPNN network correspond well to the bathymetry informaBon of the 
Sonar. The cPNN network takes about 35 seconds to invert Iseo data, while the EEMverter 
inversion based on the server pla�orm takes approximately 6500 seconds. 

IV Conclusions 

In this study, we proposed a cPNN network structure that integrates DNN imaging-Net and MDN 
Bayesian-Net, which can directly convert the observed tTEM data into a resisBvity model and 
esBmate its uncertainty. The MDN Bayesian-Net captures the posterior PDF of the geological 
model, providing both maximum probability model and DOI as references, while the DNN imaging-
Net provides an esBmaBon of the posterior PDF mean soluBon. The two imaging results of cPNN 
complement each other and provide fast and comprehensive geological resisBvity informaBon.  



Session 3.3                    GNGTS 2024

 

Fig. 1 The composite probabilisBc neural network structure diagram. The input data of the cPNN network structure is 
TEM response data, and the label data is the corresponding theoreBcal resisBvity models (Y1, Y2). The output data 
includes the DNN resisBvity model and the MDN posterior probability distribuBon funcBon. In this study, we set N=1.   

 

Fig. 2 The distribuBon of tTEM survey lines of the survey carried out on the south shore of the Iseo lake, together with 
an image of the acquisiBon and a map of the lake. 
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Fig. 3 Iseo lake tTEM data inversion results. From top to boLom: a) EEMverter determinisBc inversion; b) Deep 
learning Neural Network (DNN) output of the cPNN network; c) mean value of the Mixture Density Network (MDN) 
output of the cPNN network. 
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In recent years, machine learning techniques have been exploited in volcanology in order to assess 
natural hazards, volcano dynamics changes and early warning informaBon. Among all the other 
approaches followed so far, unsupervised algorithms have shown to be parBcularly reliable in 
dealing with huge datasets, thanks to their ability to exploit the underlying informaBon carried by 
the dataset and classify data characterisBcs without the need to label the training dataset. Since 
assigning target labels to the training dataset may be hard and Bme-consuming in many cases, 
unsupervised strategies that exploit unlabelled data, have been successfully employed as a 
clustering and visualizaBon tool in exploratory data analysis in a wide range of applicaBons. Self-
organized neural systems (SOM), specifically, have the intrinsic capability to analyze large sets of 
high-dimensional data and can be implemented in an online learning manner. A SOM algorithm 
was successfully applied to classify VLP events recorded from a borehole strainmeter at Stromboli 
volcano during the explosive sequence that occurred during the summer of 2019, when two 
disBnct paroxysms, happened about a month and a half apart, violently shook the volcano. 
Stromboli is an acBve, open-conduit strato-volcano, characterized by moderately persistent 
volcanic acBvity with a paucity of deformaBon episodes, always a candidate as a natural laboratory 
for researchers invesBgaBng erupBve precursors on open-conduit volcanoes. Following recent 
research, data recorded from borehole strainmeters carry several pieces of informaBon inherent 
the staBc and dynamic deformaBons, due to the intrinsic capability of the instrument of recording 
high precision data within a wide frequency range. The extension of the Bme period previously 
examined, from 2018 to 2020 (fig. 1), has led us to find other correlaBons between observed 
phenomenologies and VLP shape variaBons. 

Valuable informaBon is embedded in the data used in the current work, which could be used not 
only for scienBfic purposes but also from civil protecBon agencies. Such a variety of possible usage 
needs the seZng of principles and legal arrangements to be implemented in order to ensure that 
data will be properly and ethically managed, used and accessed from the scienBfic community. 
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Fig. 1 – SOM cluster of families found in May 2018-December 2020 (A) Normalized stacked waveforms belonging to 
the ith node of the SOM map (B) Temporal histograms of cumulaBve number of events per day belonging to the ith 
node determined by the SOM algorithm (C,D) Normalized stacked waveforms and histograms of VLP data for 
noBceable families: black solid line marks the occurrence of the hybrid events on 31 March 2020; red dashed lines 
mark major explosions; the two red verBcal solid lines mark the two paroxysmal events. (from Romano et al., 2022) 
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IntroducBon 

The induced polarizaBon (IP) phenomenon in airborne electromagneBc AEM data (AIP) presents a 
challenge to exploraBon in many parts of the world. It is a well-known phenomenon since Smith 
and Klein (1996) first demonstrated the presence of IP effects, which have been further discussed 
by several authors (e.g., Marchant et al., 2014; Macnae, 2016; Viezzoli et al., 2017). IP-affected 
AEM data are oWen interpreted in terms of the Cole-Cole model (e.g., Marchant et al., 2014; 
Viezzoli et al., 2017; Lin et al., 2019), but the inversion problem is parBcularly ill-posed: for a 1D 
inversion of a single sounding four parameters have to be retrieved for each model layer. 
Furthermore, AIP and ground IP modelling are usually carried out in different inversion 
frameworks, making a direct comparison of the results difficult. In this study we present a novel 
inversion soWware, EEMverter, specifically developed to model electric and electromagneBc data 
taking into account the IP phenomenon. Three disBncBve features have been implemented in 
EEMverter: i) 1D, 2D and 3D forward modelling can be mixed sequenBally or simultaneously in the 
iteraBve process within mulBple inversion cycles, for diminishing the computaBonal burden; ii) the 
joint inversion of AIP, ground EM-IP and ground galvanic IP data is fully supported with a common 
IP parameterizaBon; iii) Bme-lapse inversions of AIP, EM and galvanic IP data is possible with both 
sequenBal and simultaneous approaches. In the following, the implementaBon of EEMverter is 
described, with examples of syntheBc and field inversion results. 

Method and results 

In EEMverter the inversion parameters are defined on model meshes which do not coincide with 
the forward meshes used for data modelling: the link between model and forward meshes is 
obtained interpolaBng the model mesh parameters into the forward mesh discreBzaBon, as done 
for 1D AEM in Christensen et al. (2017), in 3D galvanic IP in Madsen et al. (2020) and in 3D EM in 
Zhang et al. (2021), Engebretsen et al. (2022) and Xiao et al. (2022a). This spaBal decoupling allows 
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for defining the model parameters, e.g. the Cole-Cole ones, on several model meshes, for instance 
one for each inversion parameter. In this way, it is possible to define the spectral parameters, like 
the Bme constant and the frequency exponent in the Cole-Cole model, on meshes coarser than the 
resisBvity and chargeability ones, verBcally and/or horizontally, with a significant improvement in 
parameter resoluBon. 

For each dataset of the inversion process, a disBnct forward mesh is defined. The interpolaBon 
from the model parameters  defined on the model mesh nodes into the values  at the 
subdivisions of the ith forward mesh is expressed through a matrix mulBplicaBon, in which the 
matrix  holds the weights of the interpolaBon, which depends only on the distances between 
model mesh nodes and the subdivisions of the ith forward mesh: 

   (1) 

In EEMverter 1D, 2D and 3D forward & Jacobian computaBons have been implemented. In 
parBcular, Transient EM data are modelled in 1D following Effersø et al. (1999); in 3D the forward 
soluBon is carried out in frequency domain, with the finite element method, both with tetrahedral 
elements or with the octree approach, similarly to what has been done with the Bme-stepping 
Bme-domain approach in Zhang et al. (2021) and Xiao et al. (2022a). The finite element approach 
is used also for frequency-domain galvanic computaBons in 2D (Fiandaca et al., 2013) and 3D 
(Madsen et al., 2020). The transformaBon to Bme-domain is obtained through a fast Hankel 
transformaBon (as in Effersø et al., 1999) for both the forward response and the Jacobian. 

The Jacobian of the model space  is computed summing the contribuBons of all forward meshes 
up (Christensen et al., 2017; Madsen et al., 2020, Zhang et al., 2021), using the domain 
decomposiBon with a forward mesh for each sounding in 3D EM computaBons (Cox et al., 2010; 
Zhang et al., 2021): 

    (2) 

The total Jacobian is used for compuBng the inversion model in a Levenberg-Marquardt linearized 
approach as follows: 

 

     (3) 

M mi

Fi

mi = fi(M ) = Fi ∙ M

JM

JM = ∑
i

Jmi
∙ Fi

T

Mn+1, j = Mn, j + [JM, j
TCd

−1JM,i + RTCR, j
−1Rj + λ I]

−1
∙ [JM, j

TCd
−1 ∙ (d − fn, j) + RTCR, j

−1Rj ∙ Mn, j]



Session 3.3                    GNGTS 2024

In equaBon (3) the subscript j indicates that the inversion process can be split in several inversion 
cycles: in each cycle j it is possible to change the forward computaBon for each dataset (e.g. from 
1D to 3D), as well as to insert/remove data/constraints from the objecBve funcBon.  

Fig. 1 presents the model and forward meshes for a joint inversion, in which 1D AEM and 1D 
ground EM computaBons are combined with 2D galvanic computaBons. 

 

Figure 1.  EEMverter mulB-mesh inversion scheme for Joint inversion of inducBve and galvanic data. Top leW) Model 
mesh and data posiBons: red polygons for AEM frames; blue squares for ground TEM frames; magenta line for galvanic 
2D profile. Top right) Galvanic 2D forward mesh. BoLom leW) Ground TEM frames (blue squares) and corresponding 1D 
soundings (grey bars). BoLom right) AEM frames (red polygons) and corresponding 1D soundings (grey bars). 

Fig. 2 presents the Bme-lapse approach of EEMverter, in which all the models of all the Bme steps 
can be inverted at once, without the need of relocaBng the model meshes when the posiBons of 
the acquisiBons vary among the Bme steps, as in Xiao et al. (2022b). 
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Figure 2.  EEMverter mulB-mesh inversion scheme for Time-Lapse inversion. Top leW) Model mesh corresponding to 
the first Time-lapse acquisiBon (red polygons). Top right) Model mesh corresponding to the second Time-lapse 
acquisiBon (blue polygons), idenBcal to the first model mesh despite of the different sounding posiBons. BoLom leW) 
Forward meshes (grey bars) of the first acquisiBon (red frames). BoLom right) Forward meshes (grey bars) of the 
second acquisiBon (blue frames). 

Fig. 3 presents the resisBvity secBon of a syntheBc model that mimics the electrical properBes 
(both conducBon and polarizaBon) of sand, clay and consolidated formaBons, based on the 
petrophysical relaBons described in Weller et al. (2015), together with the inversion model of 
inducBve and galvanic data. In parBcular, four different inversion results are presented: direct 
current and full-decay induced polarizaBon (DCIP) galvanic data, with 10 m electrode spacing and 
2D gradient sequence; AEM + ground EM data, with sounding distance of 40 m; AEM+ground EM + 
tTEM data (Auken et al., 2019), with tTEM soundings every 10 m; all data together in a joint 
inversion scheme. 

The joint inversion presents much beLer resoluBon capability, with the inducBve and galvanic data 
complemenBng each other in resolving both conducBve and resisBve layers. The same kind of 
improvement is found in Signora et al. (2024) with field data. 

Another example of joint inversion of AEM and galvanic VES data in EEMverter, without IP 
modelling but with integraBon with resisBvity logs is presented in Galli et al. (2024), where the 
asymmetric minimum support norm (Fiandaca et al., 2015) is used for an automated rejecBon of 
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conflicBng borehole informaBon. A similar approach is implemented in EEMverter also for 
automaBc processing of AEM data (2021). 

Examples of joint inversion of AEM, ground EM and galvanic IP data through EEMverter is 
presented in DauB et al. (2024) in applicaBons related to mineral exploraBon and in Signora et al. 
(2024) for the characterizaBon of the HydroGeosITe, the Italian reference and calibraBon site for 
hydrogeophysical methods under development in Brescia, Italy. 

 

Figure 3. SyntheBc model and inversion results. Top leW) resisBvity secBon of a MPA IP simulaBon of electrical 
properBes; BoLom leW) inversion model of DCIP data; BoLom right) inversion model of AEM+ground EM data; Top 
right) joint inversion of all inducBve and galvanic data. 

Conclusions 

We presented EEMverter, a novel inversion soWware for electric and electromagneBc data with 
focus on induced polarizaBon. Three disBncBve features have been implemented in EEMverter: i) 
1D, 2D and 3D forward modelling can be mixed sequenBally or simultaneously in the iteraBve 
process within mulBple inversion cycles, for diminishing the computaBonal burden; ii) the joint 
inversion of AIP, ground EM-IP and ground galvanic IP data is fully supported with a common IP 
parameterizaBon; iii) Bme-lapse inversions of AIP, EM and galvanic IP data is possible with both 
sequenBal and simultaneous approaches. We believe that EEMverter, with its common inversion 
environment for the IP inversion of inducBve and galvanic data will help in closing the gap between 
electric and electromagneBc data in AEM applicaBons. 
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Summary 

Airborne electromagneBc (AEM) surveys are widely used for hydrogeological applicaBons. Target 
areas for AEM campaigns may present a great deal of ancillary informaBon (e.g., resisBvity logs, 
lithology, etc.) and integraBng them with AEM data is fundamental. Yet, using this informaBon 
either as a-priori or a-posteriori may bring out conflicts between different datasets, prevenBng the 
fiZng of all data. For instance, some borehole drillings may have been logged inaccurately, AEM 
data may present bias, or data may have been acquired at different Bmes, with variaBons 
occurring in between. 

In this study we present a way to integrate AEM data and other types of resisBvity data (boreholes 
electrical logging and verBcal electrical soundings, in this case), through an inversion scheme that 
idenBfies automaBcally conflicBng data without prevenBng the general convergence of the 
process. In order to do so, we make use of a generalizaBon of the minimum support norm, the 
asymmetric generalized minimum support (AGMS) norm, for defining the data misfit in the 
objecBve funcBon of an iteraBve reweighted least squared (IRLS) gauss-newton inversion. The 
AGMS norm in the data misfit caps the weight of non-fiZng data points, allowing for the inversion 
to focus on the data points that can be fiLed. Outliers are idenBfied aWer the AGMS inversion and 
excluded, in order to complete the inversion process with a classic L2 misfit. 

We present an applicaBon of this method in the Netherlands, on a SkyTEM survey complemented 
with a vast and open-source database of ashore resisBvity logs, as well as verBcal electrical 
soundings (VES). 
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IntroducBon 

In areas rich with ancillary data, their integraBon in the inversion is a must, for validaBon as well as 
for enhancing sensiBvity. However, data integraBon can be a tricky process for many reasons: 
biased data, difference in supporBng volume along with their locaBon, or they may have been 
acquired in different periods, with variaBons occurring in between due, for instance,  to the 
depleBon of groundwater resources or seawater intrusion. 
ConflicBng data in an inversion process can easily prevent the proper convergence of the inversion, 
but culling too much data out might throw out important informaBon. The removal of conflicBng 
informaBon is even more difficult when there is a significant amount of ancillary informaBon, 
acquired over a long period of Bme. 
To solve this challenge, we propose to use a generalizaBon of the minimum support norm (Last 
and Kubik, 1983; Portniaquine and Zhdanov 1999), namely the asymmetric generalized minimum 
support AGMS norm (Fiandaca et al., 2015), for idenBfying outliers in a joint inversion of AEM data, 
verBcal electrical soundings (VES) and borehole resisBvity logs. We test the method on a syntheBc 
example, mimicking a joint inversion of AEM data and borehole logs, with both correct and 
incorrect logging, as well as real data. The field case consists of a SkyTEM survey carried out in 
2022, complemented with a vast and open-source database of ashore resisBvity logs, as well as 
VES, acquired over many decades. 

Method and results 

The inversion of AEM, VES and borehole logs is carried out in EEMverter (Fiandaca et al., 2024), a 
new inversion algorithm in which different norms are applicable in the objecBve funcBon for both 
data misfit and regularizaBon through the iteraBvely reweighted least squared (IRLS) inversion 
scheme (Farquharson and Oldenburg, 1998). 

In parBcular, the penalty of the data misfit x=d-f between data and forward response is expressed 
through the AGMS norm (Fiandaca et al., 2015) as: 

                                                                  (1) 
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In (1) and (2), σ is the data standard deviaBon, p1 and p2 control the shape of the norm before and 
aWer x/σ=1 and α determines the total weight of the penalty. 

With this choice of values for the norm seZngs the AGMS norm gives misfit 1 for x/σ=1 (i.e. the 
same value of the L2 norm), with similar penalty for low misfit (because of p_1=1) and a slow 
growth of the penalty when x/σ>1 (because of p2=0.5). This slow growth allows for applying the 
AGMS norm in an iteraBve minimizaBon process, because a decrease in x/σ gives a measurable 
penalty reducBon. 

This data norm is applied in a IRLS inversion composed of three inversion cycles (Fiandaca et al., 
2024) with 1D forward/Jacobian computaBons:  

1.a preliminary cycle which finds the best starBng model without verBcal variability of the 
parameters, through the use of a single-layer forward mesh;  

2.a cycle where the AGMS norm is applied 

3.the data norm is switched to the L2 norm, to reject the data with misfit above the set thresholds, 
and the inversion is carried out unBl the reach of the minimum misfit.  

In all cycles, borehole logs are treated as data, with the forward response of the logs consisBng in 
the interpolaBon of the model resisBvity at the log locaBons (Fiandaca et al., 2024).  

Fig. 1 presents a syntheBc model of a fresh aquifer enclosed between an unsaturated sand dune 
and a brackish aquifer, and confined by clay layers. AEM data (Xcite system, New ResoluBon 
Geophysics) and three borehole logs are simulated and inverted with a classic L2 data norm and 
the AGMS norm, with three data scenarios: 

1.only AEM data are available (Fig. 1D and 1G); 

2.AEM data are complemented with the logs that bear correct informaBon (Fig. 1E and 1H); 

3.one log contains wrong resisBvity values (Fig. 1F and 1I). 

Figure 1. Conceptual model (A), boreholes informaBon (all correct in B, one incorrect in C); model recovered by Xcite 
AEM data without drilling informaBon using L2 norm (D) and AGMS norm (G); model recovered by Xcite with all 
correct drilling informaBon using L2 norm (E) and AGMS norm (H); model recovered by Xcite with parBally incorrect 
drilling informaBon using L2 norm (F) and AGMS norm (I).
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Both L2 and AGMS inversions improve the model retrieval when correct log informaBon is added, 
but a very different behaviour occurs when wrong data are fed to the inversions: the L2 inversion 
shows a significant arBfact at the locaBon of the wrong resisBvity log, while the AGMS inversion is 
almost insensiBve to the outliers. 

The same inversion procedure was used on a SkyTEM dataset acquired in the Netherlands in 2022, 
25 kilometres west of Amsterdam (Fig. 2, top leW inset), together with 94 borehole resisBvity logs, 
91 VES, acquired in the same area over a period ranging many decades, in which the volume of the 
fresh groundwater has changed considerably. Excessive water abstracBon from deep wells 
between 1903 to 1957 caused depleBon of fresh groundwater. In 1957 pumping stopped and 
infiltraBon with treated water from the river Rhine started. This enlarged the drinking water 
producBon capacity and restored the fresh water volume in the deep aquifer (Geelen et al., 2017; 
Olsthoorn and Mosch, 2020). The wells can sBll be used as a back-up system if the quality of the 
water in the river Rhine is not sufficient. That’s why the integraBon of resisBvity logs and VES with 
AEM data is difficult: data will conflict not necessarily because of their different support volume or 
sensiBvity, but because they were acquired over different periods of Bme. Thus, with the AGMS 
inversion we aim at two disBnct goals: improving the AEM inversion where borehole logs and VES 
informaBon bring compaBble informaBon; idenBfy the conflicBng informaBon, as a proxy of the 
variaBons that occurred on the fresh-sea water balance over the decades. 

A 40 m x 80 m XY horizontal discreBzaBon and log-increasing depths from 5 to 400 m were used 
for the inversion, with the same three-cycle inversion scheme uBlized for the syntheBc case. Only 
borehole logs and VES data were rejected in the last cycle, the aim being to idenBfy the 
informaBon conflicBng with the AEM data, which were carefully processed. 

Fig. 2 presents the rejecBon rate for both log data and VES data with the AGMS joint inversion, in 
comparison with the rejecBon rate computed aWer an AEM-only inversion, in which log and VES 
data do not concur in the model definiBon. The rejecBon of log data is not applied to enBre logs, 
but value by value along the borehole depth. So, the rejecBon rate indicates for each borehole log 
the fracBon of values rejected. The overall rejecBon rates are presented also in Table 1.  

Table 1: Comparison between rejecBon rates with AGMS joint inversion of AEM, VES and log data and with AEM-only 
inversion 

Total data Data rejected 
with AGMS

Rejec8on rate %
Data rejected 

with 
AEM-only

Rejec8on rate %

Borehole logs 33646 4399 13 12646 38

VESs 1815 1159 64 1475 81
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Figure 2. Plots of the fracBon of rejected data with applicaBon of AGMS norm in joint inversion (leW secBons) and with 
AEM-only inversion (right secBons); Top – rejecBons of log data; boLom – rejecBon of VES data. In the top right corner 
the surveyed area  

As clearly shown by Fig. 2 and Table 1, the AGMS inversion has a much lower rejecBon rate, with 
very good compaBbility between logs and AEM data, and poorer compaBbility between the old 
VES data and the AEM ones. However, spaBal paLerns exist in the rejecBon fracBons, which might 
be correlated with the variaBons occurred in the fresh-sea water interface. The AEM-only inversion 
has a much lower compaBbility with the ancillary data, which is mostly due to equivalence 
problems instead of conflicBng informaBon. 

Finally, Fig. 3 presents the comparison of the joint AGMS inversion and of the AEM-only inversion 
on an exemplary log, where AGMS inversion model fits much beLer the borehole informaBon. 
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Figure 3. Comparison between Borehole#8 log (yellow star in Fig. 3) and inversion model. LeW – AGMS joint inversion; 
right – AEM-only inversion. Blue lines – inversion model; black lines – resisBvity logs; red lines – rejected data in 
resisBvity log in the joint AGMS inversion. 

Conclusions 

The inversion scheme proposed in this study allows an automated integraBon of AEM data and 
resisBvity logs, as well as ground-based galvanic VES measurements, even in presence of 
conflicBng informaBon. The AGMS data norm puts a cap at the misfit penalty of outliers, and 
grants convergence to the inversion without culling valuable informaBon out. 

This approach allows to integrate to AEM surveys a great amount of ancillary data, without the 
need of careful and Bme-consuming data veZng: the accurate inspecBon of ancillary informaBon 
could be reserved only to the data rejected by the automated scheme, with the kept data readily 
usable for further integraBon and interpretaBon. 

Furthermore, this automated integraBon scheme is fully general, and can be applied not only to 
AEM data, but to any geophysical problem simply using the appropriate forward modelling. 
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ASSESSMENT OF THE SIBSON INTERPOLATION 
METHOD 
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1 IsBtuto di Oceanografia e di Geofisica Sperimentale, OGS, Trieste 

IntroducBon 

In 2022 we presented a note (Iurcev et al. 2022) on the assessment of uncertainBes for the Natural 
Neighbours – hereaWer NN - interpolaBon method (Sibson 1980, 1981) with bidimensional scalar 
data. This non-parametric interpolaBon method uniquely determines the interpolated data and is 
therefore classified as a determinisBc method. However, it is important to quanBfy the 
uncertainBes due to the spaBal distribuBon of the dataset to be interpolated. The implementaBon 
of this approach is now reported in Iurcev et al. 2023. This approach is based on a gradient method 
derived from the bivariate version of the Mean Value Theorem MVT (also known as the Lagrange 
Theorem) in ℝ2, combined with Sibson’s formula for interpolaBon (Iurcev et al. 2023). 

This determinisBc method, based on the MVT, raises two major issues. The first problem concerns 
gradient esBmaBon. The second issue is the unknown locaBon of the points  of MVT, along the 
line between the interpolaBon point and the i-th Natural Neighbour. The purpose of this note is to 
show how we have tried to solve these two issues. 

Gradient esBmaBon 

In Iurcev et al. 2022, we presented an approach that is widely used in the literature. The 
approximaBon of the gradient using finite differences superimposed on a regular grid in which the 
funcBon value is known or esBmated. However, this method introduces an addiBonal level of 
uncertainty as the funcBon must be interpolated through the grid. The proposed approach is the 
Local Least Squares plane approximaBon of the unknown surface. The OLS (Ordinary Least 
Squares) approximaBon requires a subset of points xi, f(xi) in the neighbourhood. If there are at 
least three non-colinear points in ℝ3 space, the linear regression defines a plane whose slope is a 
possible gradient esBmator. In this context, two different least squares strategies for compuBng 
the gradient for bivariate interpolaBon of surfaces are invesBgated by Belward et al. (2008). The 
two methods are based on the generalizaBon of Moving Least Squares (MLS). The first method is 
the classical method based on a linear system of equaBons in which the gradient is derived by a 
second order truncated Taylor expansion. In the second method, the gradient is a consequence of 
the Finite Volume Method (FVM) soluBon which is used to solve a diffusion equaBon. Belward et 

ξi
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al. (2008) show that "the uniqueness of the gradient esBmates, [using both methods], is not a 
result of the analyBcal properBes of the approximaBon processes, it is a consequence of the 
method of linear least squares". 

We studied some possibiliBes to compute the gradients by OLS, using the subset of points around 
a grid point. A method is an "n" esBmate (based on NNs) and another using an "r" esBmate (using 
the distance within a fixed radius). Of course, the choice of radius in the r-method is quite 
arbitrary, whereas the n-method is uniquely defined. If the radius is too small, the subset used for 
the OLS esBmator may be for many interpolaBon points. If the radius is too large, the gradient 
esBmate will be very poor. The best choice for the fixed radius depends on the local density of the 
dataset. As described in De Keyser et al. (2007), the method is only valid if the so-called spaBal 
homogeneity condiBon is fulfilled. 

To test the gradient, we used a random dataset of 500 points in the unitary square [0,1]2 of Franke 
(1979) funcBon. The Franke funcBon is a differenBable funcBon that is oWen used as a test funcBon 
in literature. The main problem for the opBmal radius depends strictly on the local spaBal density 
of the dataset, instead. The NN bypasses this problem, but at the same Bme is not feasible if we 
approximate the points ξi with the relaBve NNs, since the vectorial expression becomes zero. The 
staBsBcal tests performed so far suggest that OLS gradient esBmaBon with a fixed radius can 
provide reasonable esBmates. There are many ways to combine gradient esBmaBon and our 
equaBons. Since the Franke funcBon is known, it is also possible to obtain a "semi-exact esBmator" 
using its exact gradient. The only problem is the true locaBon of points ξi, which must be 
approximated by the point of interpolaBon x*, the data points xi, the midpoint, or in some other 
way. 

Although many interesBng quesBons have been raised, the invesBgaBon is sBll ongoing and 
requires further analysis from both theoreBcal and experimental perspecBves. 
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Ensemble-based AcousBc Full Waveform 
Inversion: A SyntheBc Data ApplicaBon  

F. Macelloni1, M. H. Altaf1, M. Aleardi1, E.M. Stucchi1  

1 Department of Earth Sciences, University of Pisa, Pisa, Italy 

IntroducBon 

Full Waveform Inversion (FWI) is one of the most powerful techniques to esBmate the distribuBon 
of seismic wave velocity in the subsurface. The determinaBon of the velociBes from the recorded 
seismograms represents an inverse problem and FWI aims to solve it by exploiBng the full 
informaBon content of the data.  

Despite the high resoluBon results that FWI is able to provide, there are some drawbacks we have 
to deal with when using this kind of opBmizaBon. One of them is the risk of being trapped in local 
minima of the objecBve funcBon, which expresses the distance between observed and esBmated 
data. This problem is mainly due to the lack of low frequencies in the data (cycle skipping issue) 
and to a starBng model lying too far from the global minimum of the error funcBon. To alleviate 
this problem, a global opBmizaBon approach could be adopted to replace the standard local, 
determinisBc strategy, at the expense of a significant increase of the computaBonal workload. 
Another limitaBon of the determinisBc inversion is also the impossibility to assess the uncertainty 
affecBng the esBmated subsurface velocity model.  

In this work we cast the FWI into a probabilisBc framework. The aim of the work is twofold: making 
the FWI results less dependent from the starBng model, while also esBmaBng the uncertainty on 
the inversion outcomes. Therefore, our aim is not to esBmate a single, best-fiZng soluBon but 
providing as the final results the so called posterior probability density funcBon from which extract 
significant staBsBcal properBes concerning the esBmated model (i.e., mean model and the 
associated standard deviaBon). 

In parBcular, we present an ensemble-based approach to FWI, using the Ensemble Smoother with 
MulBple Data AssimilaBon (ES-MDA) algorithm (Emerick et al., 2013). This method allows us to 
perform a Bayesian FWI by considering an ensemble of velocity models and iteraBvely updaBng 
each of these realizaBons. The underlying assumpBon is that data and model parameters follow a 
Gaussian distribuBon. MDA can be considered as an iteraBve version of the standard ES and, 
instead of a single and large correcBon, it performs mulBple smaller updates, achieving good data 
predicBons in less iteraBons. For addiBonal details, see Thurin et al. (2019) and Aleardi et al. 
(2021b). 
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This kind of approach makes the inversion highly demanding from a computaBonal point of view, 
so it is necessary to adopt some strategies to alleviate this effort: here we employ the Discrete 
Cosine Transform (DCT) to compress both data and model space. This technique reduces the 
number of unknown in the inversion and also the dimensions of the matrices and vectors involved 
in the ES-MDA approach. The DCT is a Fourier-related transform through which a signal can be 
expressed as sum of cosine funcBons. Since the DCT concentrates most of the energy of the signal 
in low order coefficients, it is possible to get an approximaBon of the original signal by discarding 
those that are very close to zero and retaining only the low order ones. Other informaBon can be 
found in Britanak et al. (2010) and Aleardi et al. (2021a). 

In this work we restrict the applicaBon of EB-FWI to a syntheBc case, but its uBlizaBon to field data 
is being prepared. In fact, we processed a 2D seismic line from the FORGE (FronBer Observatory 
for Research in Geothermal Energy) geothermal experiment located in Utah, USA (Miller at al., 
2018). Precisely for the purpose of applying a FWI to this dataset, we performed a dedicated 
processing, comprehensive of MigraBon Velocity Analysis (MVA), for improving the velocity field 
esBmaBon. 

Method 

In this work we use an ensemble-based approach implemenBng the ES-MDA algorithm to cast the 
FWI in a Bayesian inference framework. The ensemble-based method represents a data 
assimilaBon algorithm in which the posterior distribuBon consists of a set, also called ensemble, of 
model realizaBons. It can be demonstrated that ES corresponds to a single Gauss-Newton step, but 
it usually requires many iteraBons to ensure a good data predicBon when compared to MDA, 
which speeds up the convergence performing mulBple assimilaBons (correcBons) of the data.  

The steps of MDA algorithm are the following: choice of the number of data assimilaBons 
(iteraBons); generaBon of the starBng ensemble of models drawn from a Gaussian prior 
distribuBon; for each iteraBon and for each model of the ensemble, computaBon of the data 
associated to each member of the ensemble, perturbaBon of each data and update of the models. 
A schemaBc representaBon of the algorithm is shown in Fig.1. The perturbaBon of each data 
vector is made according to  

, 

where:  is the observed data,  is a random perturbaBon of the observed data,  is called 
inflaBon coefficient,  is the data covariance matrix and , with  

represenBng a Gaussian distribuBon and  the idenBty matrix. The update of each model of the 
ensemble is defined as follows:  

 , 

with , where  is the number of models in the ensemble, the superscripts  and  
refers to variable computed at the current iteraBon (updated) and to the previous one, 
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respecBvely, and  is the data associated to the -th model . The matrix  represents the so 

called Kalman gain, given by:  

. 

In the previous equaBon  is the cross-covariance matrix between the model  and the 

associated data , whilst  is the covariance matrix of the predicted data. 

 

Fig. 1 – SchemaBc representaBon of the EB-FWI algorithm. This scheme also shows the possibility to apply a local FWI 
using as starBng model the result of the global one. This step allows to improve the resoluBon of the result.  

The velocity models forming the starBng ensemble are drawn from a Gaussian prior distribuBon in 
which a Gaussian variogram has been included to impose the desired spaBal variability on the 
velocity model. 

The workload of the procedure can be alleviated by adopBng a reparameterizaBon technique able 
to considerably reduce the computaBonal complexity of the problem. Among the possible 
methods, we choose the DCT for its compression ability, its linearity, the possibility to easily extend 
it to more than one dimension and because its applicaBon does not overload the inversion 
procedure with addiBonal computaBonal Bme. The compression power of this method relies on 
the fact that it is able to concentrate most of the informaBon of the signal into the low order 
coefficients. As a consequence, the majority of these coefficients are very close to zero, and 
retaining only the low order ones is sufficient to approximate the original signal without losing 
relevant informaBon. Furthermore, compressing data and model space, we considerably reduce 
the size of matrices and vectors involved in the computaBons. The DCT compression also miBgated 
the ensemble collapse issue, consisBng in the fast convergence of the ensemble towards the mean 
and in the consequent underesBmaBon of the posterior variance. The most common soluBon to 
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reduce this problem is to increase the ensemble size (Roe et al., 2016). The DCT, in this sense, 
helps in lowering the number of ensemble individuals needed to avoid collapse and, as a 
consequence, the number of forward modelling computaBons. We perform the compression 
through a 2D DCT, applying it in both horizontal and verBcal direcBons. The choice of the number 
of DCT coefficients to retain in each direcBon is made through an analysis of the variability of the 
original signal that it is preserved aWer the compression. The variability is here defined as the raBo 
between the standard deviaBons of compressed and uncompressed signal (see Aleardi et al., 
2021a). 

SyntheBc inversion 

We applied the ES-MDA acousBc FWI to a porBon of the syntheBc Marmousi benchmark model. 
The considered model extends 4.3 km horizontally and 1.340 km in depth. This is the porBon that 
has been inverted, and it lies below a water layer 0.260 km deep, considered when compuBng the 
syntheBc seismograms. The inverted porBon was discreBzed with a grid characterized by a spacing 
of 20 m in both horizontal and verBcal direcBon. This results in 216 nodes along the horizontal 
direcBon and 68 on the verBcal one. A Ricker wavelet with a central frequency of 5 Hz is 
considered as the source signature. We simulated 5 shots equally spaced along the horizontal axis, 
from the leW to the right edge of the considered area and recorded by 200 receivers, with a 
constant receiver interval of 21.6 m. The Bme interval is 4 ms and the record length is 3 s. We 
added to the observed data uncorrelated Gaussian noise, with a standard deviaBon equal to 10% 
of the standard deviaBon of the noise-free data.  

We observed that retaining 30 DCT coefficients along the first (horizontal) dimension and 15 along 
the second (verBcal) one was enough to properly represent about 95% of the variability of the 
original Vp model. In this way, we can compress the model space from 68x216=14688-D to 
15x30=450-D. A similar analysis on the seismic data led us to use 55 DCT coefficients along the 
horizontal and 65 along the verBcal direcBon. Considering that we simulate 5 shots, the original 
751x200x5=751000 parameters are reduced to 65x55x5=17875 in the compressed data space. 

A test phase has been performed to assess the minimum number of models within an ensemble 
needed to obtain a good reproducBon of the main features of the original velocity model. We 
noBced that a good compromise between the quality of the results and the computaBonal Bme 
was possible considering ensembles of 10000 models. Increasing this number does not lead to a 
considerable improvement of the inversion result, whilst it highly affects the computaBonal cost of 
the procedure. We further observed that 10 iteraBons of the algorithm are enough to reach 
convergence. The computaBonal Bme required by the EB-FWI is approximately 8 days. 

The acousBc forward modeling has been performed using Devito, a python package that 
implements a high performance finite difference parBal differenBal equaBon solver (LoubouBn et 
al., 2019). We run the serial code implemenBng the inversion on a server equipped with Intel® 
Xeon® Silver 4114 CPU @ 2.20 GHz. 

Fig.2 shows the result of the inversion, comparing the original model, the corresponding model 
aWer the DCT compression, the model used as mean of the prior distribuBon and the mean of the 
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final ensemble. As a prior mean model we used a gradient model, with velocity values increasing 
from top to boLom and ranging from the minimum to the maximum value of the original model 
(Fig.2-c). We observe that the model obtained with the EB-FWI (Fig.2-d) contains all the main 
features visible in the DCT-compressed version of the original porBon of the Marmousi model. The 
main differences are placed on the boLom and in lateral porBons of the model, where the 
algorithm is someBmes not able to correct high or low wrong velocity values. Anyway, this 
happens in the less illuminated parts of the model, characterized by higher values of the standard 
deviaBon (Fig.2-e). A comparison of observed and predicted data is shown in Fig.3, along with their 
difference. The represented shot is the third of the five simulated, and its posiBon corresponds to 
the center of the horizontal extension of the model. The represented seismograms show a good fit 
between observed and predicted data. Fig.3-b shows the shot gather computed on the gradient 
model, used as the mean of the prior distribuBon. Considering that this is the seismogram 
associated with the mean of the starBng ensemble and comparing the observed data (Fig.3-a) with 
the seismogram corresponding to the mean of the last ensemble (Fig.3-c), we clearly see that the 
algorithm appears able to properly reproduce the main events in the data. 

 

Fig. 2 – a) True model, porBon of the syntheBc Marmousi model; b) true model aWer the DCT compression; c) mean 
model of the prior distribuBon; d) final result of the EB-FWI; e) standard deviaBon associated to the inversion result. 
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Fig. 3 – a) Observed seismogram; b) seismogram computed from the mean model of the prior distribuBon; c) 
predicted seismogram; d) difference between observed and predicted seismograms.  

Conclusions 

We presented an ensemble-based approach to FWI using the ES-MDA algorithm. To reduce the 
computaBonal effort required by such an approach, we compress both data and model space 
through a 2D DCT. We applied the algorithm to a porBon of the syntheBc Marmousi model in the 
acousBc approximaBon. The results are saBsfactory: the mean of the final ensemble contains all 
the main features of the original, DCT compressed, model showing the main differences on the 
deepest porBon and on the edges. Even in data space we observe a good fit between observed 
and predicted data. The algorithm appears able to deal with the cycle skipping issue miBgaBng it: 
to this end, some tests, not shown here for the lack of space, have been performed. 

Future steps of this research are further tests on the algorithm, with the aim of approaching the 
applicaBon to field data. The code will also be improved to run in parallel, to considerably reduce 
the overall computaBonal Bme. Further invesBgaBons will be carried out to obtain a more reliable 
esBmaBon of the uncertainBes. 
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Greenland and AntarcBca ice mass balance 
(2002-2017) through source decomposiBon in 
hypercompact atoms. 

M. Maiolino1, M. Fedi1, G. Florio1 

1University of Naples “Federico II” – DiSTAR, Dipar@mento di Scienze della Terra dell’Ambiente 
 e delle Risorse 

We present a new esBmaBon based on a novel approach named ECS (Extremely Compact Sources) 
of the ice-sheet total mass variaBon in Greenland and AntarcBca using Bme varying NASA GRACE 
(Gravity recovery and climate experiment) Stoke’s coefficient data in the Bme span 2002-2017. 
Over a 15-year period the NASA missions GRACE (Gravity Recovery and Climate Experiment) and 
the following GRACE-FO provided a unique opportunity to map the changes in Earth's gravitaBonal 
field and gave to the scienBfic community a new vision of the major ice sheet dynamics. In the last 
years, it has become clear that the ice sheet total mass response to climate change is crucial for 
understanding the sea level rising phenomena related to grounded ice melBng and to quanBfy the 
ice sheet front retreat in the polar regions. Even if an approximaBon of the total mass changes in 
the polar regions can be done with the standard methods, namely the conversion method (Wahr 
et al., 1998) or the point mass inversion (Baur et al., 2011), a major issue in the GRACE data 
interpretaBon comes from the leakage effect caused by the presence of outlying melBng ice bodies 
which gravity effects interfere each other. Our esBmaBon uses a novel approach that, exploiBng 
the non-uniqueness of the gravity field, retrieves a hypercompact model of the sources by an 
iteraBve inversion. We will show that this approach solves the inherent leakage effects of the 
GRACE data and, thanks to the extreme compactness of the sources, allow us to do a 
quanBficaBon of the total mass loss in the study area with less ambiguity.  
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Offshore seismic monitoring: the Rospo seismic 
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project. 
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IntroducBon 
Extending mulBparameter monitoring, and in parBcular seismic one, to offshore areas represents a 
great challenge from many points of view. Nowadays it has become indispensable for a beLer 
understanding of the phenomena affecBng the marine environment, as the oceans cover 70 
percent of the Earth’s surface, and also to provide a beLer localizaBon of earthquakes along 
coastal and offshore sectors. 
For many years, the IsBtuto Nazionale di Geofisica e Vulcanologia has been involved in the 
underwater mulBparameter monitoring of the ocean floor (Beranzoli et al., 2000, 2015; D’Anna et 
al., 2009; Favali et al., 2006a, 2006b; Monna et al., 2005, 2013; Sgroi et al., 2006, 2007, 2019, 
2021). Since 2005, the OBS Lab of Gibilmanna (Cefalù, Italy) has been dealing with the 
technological development of submarine systems, and the on-site specific operaBons for both 
deployment and recovery of the scienBfic instruments. 
Recently the InSEA project (detailed descripBon in De SanBs et al., 2022), funded by the Italian 
Ministry of University and Research, aims to increase at naBonal level the network of marine 
observaBon and monitoring systems in accordance with EMSO (European MulBdisciplinary 
Seafloor and water column Observatory) ERIC (European Research Infrastructure ConsorBum) 
infrastructures in the less developed regions of Southern Italy. The project is developed according 
to six ObjecBves of RealizaBon (ORs); in parBcular, among the acBvity belonging to the OR3, are 
listed the increase of the equipment for seafloor seismic monitoring (Ocean BoLom Seismometers 
- OBS) and the extent of the geophysical network between the AdriaBc and Ionian Sea, by 
deploying submarine mulB-parameter monitoring modules within the safety areas of five oil 
pla�orms (ca. 200 m away). 
An opportunity to study the possible advantages and disadvantages of installing scienBfic 
instrumentaBon in such a prohibiBve environmental context is represented by the Rospo seismic 
staBon. In May 2018, a Framework Agreement between the Ministry of Economic Development – 
General Department for the Safety of Mining and Energy (DGS-UNMIG), INGV and Assomineraria, 
was signed to start a scienBfic collaboraBon. Subsequently, DGS-UNMIG, INGV and EDISON Spa (as 
a member of Assomineraria) signed an ImplemenBng Agreement for research purposes. As a first 
implementaBon of the Agreement, one of the conductor pipe (hereinaWer c.p. D) of the Rospo 
Mare C oil pla�orm (RSM-C, middle AdriaBc Sea) has been made available for seismic and 
mulBparameter monitoring. The installaBon of an OBS was concluded in January 2020 and, since 
February 2020, it belongs to the NaBonal Seismic Network (hLp://www.gm.ingv.it/index.php/rete-

http://www.gm.ingv.it/index.php/rete-sismica-nazionale
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sismica-nazionale), whose recorded data are transmiLed in real Bme, through the EDISON 
network, to the INGV seismic monitoring centre. 
The Rospo Mare C oil plalorm: arrangement and mechanical behaviour 
The RSM-C oil pla�orm (42° 14’ 8,365” N, 14° 55’ 54,682” E) is located offshore facing the city of 
Vasto and is part of a group of three pla�orms interconnected with each other by submarine 
pipelines. It is characterized by a four-legged reBcular structure, about 100 m high from the 
seabed, while around 80 m are submerged. About 40 m of the c.p. D are buried within the soW 
sediments of the seafloor, while around 94 m between the seafloor and the sea surface, and other 
10 m from the laLer to the pla�orm. 
The offshore pla�orms are obviously subjected to several natural forces (winds, sea currents, 
waves) and anthropogenic ones (e.g. oil extracBon processes), that excite the vibraBonal mode 
shapes of their structures. All these vibraBon fields can interfere with the seismic data acquisiBon 
system, in terms of quality of the recordings, reducing the Signal-to-Noise RaBo (SNR). 
To calculate the natural frequencies of the c.p. D, we perform a finite element modal analysis, 
appropriately constrained, following the method described in Cammalleri and Costanza (2016). For 
the same purposes, the natural frequencies of other exisBng pla�orms, structurally similar to RSM-
C, were collected from the literature (Jiammeepreecha et al., 2008; Raheem et al., 2012; 
Weldelassie, 2014). Furthermore, the frequencies of marine waves and those related to Von 
Karman’s vorBces (caused by sea currents flowing around the c.p. D) were considered. All those 
frequencies are listed in Tab. 1. 

Tab 1. Vibra@on frequencies   

Data acquisiBon system 
The installaBon of an OBS at the base of the c.p. D of the RSM-C has been logisBcally possible, with 
the awareness of disturbances and relaBvely high noise levels between 0.1 and 10 Hz. As to 
minimize the influences of such disturbances, and also to ensure a good coupling, we developed a 
system which allows the sensor self-burying within the peliBc sediments of the seabed. As shown 
in Fig. 1, two conical caps are aLached to the sensor and connected to a hydraulic circuit which 
conveys a flow of water from the top of the c.p. D to the seabed. A downward jet of water, coming 
out from below the sensor, digs a hole in the sediments, both ensuring an easier deployment and 

[Hz]

Nat. Freq. of pla�orms structurally similar to RSM-C

Nat. Freq. C.p. D [Jiammeepreecha] [Raheem] [Weldelassie, 2014] Marine waves Von Karman

0.3 0.8 1.1 0.25 0.005 – 0.15 0.03

0.8 0.8 1.1 0.06

1.5 2 1.4 0.12

2.5 3.6 0.15

3.7 3.6

http://www.gm.ingv.it/index.php/rete-sismica-nazionale
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recovery of the instrumentaBon. A dispersing nozzle was also designed to opBmize the burying 
system.  

The whole data acquisiBon system is composed of a broadband seismometer Nanometrics Trillium 
OBS 120 s and a Guralp DM24 digiBzer inside the electronics vessel. A 150 m long marine cable, 
carrying data and power, connects the vessel to the surface unit. As it can be seen in Fig. 1 (a-c), a 
custom-made centering disc, made of polyethylene, guarantees the correct posiBoning of the 
bundle formed by the cables, rope and pipe above the sensor. It supports the electronic vessel and 
prevents the bundle from touching the walls of the c.p., as they may transmit mechanical noise to 
the sensor through the bundle. 

The core of the surface unit is a Guralp EAM-U digital acquisiBon system, hosBng a SEEDLink server. 
The server is accessible from the INGV seismic monitoring center, where a SEEDLink client will 
conBnuously receive the seismic data, available in near real-Bme. 

 

Fig. 1 – SchemaBc arrangement of the whole instrumentaBon deposited at the boLom of the c.p. D (a). In (b) and (c) a 
focus on the centering disc supporBng the digiBzer. 

Quality evaluaBon of the recorded signals 
As a first step, we collected the signals of the first week of each month, day by day, between March 
2020 and October 2023 through the dedicated FDSN Web Services (hLps://www.fdsn.org). 
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Sample frequency is equal to 100 Hz so, as to invesBgate the whole range of frequencies of the 
sensor, we employ a signal windowing of 16.384 samples. We thus calculated the so-called Power 
Spectral Density (PSD, Fig. 2), the amplitude spectra and the spectral raBo (Nakamura, 1989) (Fig. 
3d), as their temporal variability idenBfies the main noise sources at the recording sites, defines 
the noise levels of a staBon and assesses the earthquakes detecBon capability. Fig. 2 shows the 
PSDs calculated for the three components and the seasonal ones of the verBcal component, for 
the whole period (308 days analysed). Comparing our results with the NLNM and NHNM reference 
curves (Peterson, 1993) we observed that the noise spectra levels are generally high and exceed 
the upper limit for period below 2 s and above 10-20 s. In the microseisms band (0.1-10 s), we 
observed the typical peaks, the so-called single (SF) and double frequency (DF), as a result of the 
interacBon between atmosphere, sea surface, and seafloor (Webb, 1998). 

 

Fig. 2 – Seasonal and whole period PSD’s for the three components. All the curves are reported in grey, while the mean 
one is color-coded. Peterson reference curves in black. 

Because it is not always possible to check the arrangement of the instrumentaBon during the 
deployment, is fundamental the a posteriori establishment of the eventual correcBon to apply to 
the horizontal channels signals as to bring them to the convenBonal Cartesian reference. Among 
the several approaches known in the literature, we choose that proposed by Doran and Laske 
(2017) which is based on the measurement of the Rayleigh wave arrival angles. The result 
highlighted a deviaBon from north of 107°; therefore, by applying this correcBon we observed that 
the signal is almost constantly polarized towards SSE-NNW (Fig. 3c). 
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Nowadays this procedure has been automated in MATLAB by the development of an interface we 
called “on demand” (Fig. 3), which allows a qualitaBve inspecBons of the recorded signals in near 
real-Bme. 

 

Fig. 3 – “On demand” interface. In (a) the dialog box. In (b) the spectrograms (on the leW) and the Power Spectral 
Density (on the right) for the three components. In (c) the signal polarizaBon polar histogram and in (d) the amplitude 
spectra (on the top) and the horizontal-to-verBcal spectral raBo (on the boLom). 

Conclusions 
The OBS Lab of Gibilmanna performed the first installaBon of a broadband OBS at the boLom of 
one of the conductor pipes of the Rospo Mare C oil pla�orm. For a preliminary analysis of the 
signals we developed a semi-automated MATLAB interface, which allow a fast qualitaBve 
evaluaBon. Notwithstanding our results highlighted that the site is noisy, compared to some land-
staBons, the system has been extensively tested and nowadays is fully funcBonal. Hopefully, our 
experience and observaBons could help in exploring the opportuniBes that such structures may 
offer to extend the naBonal seismic network to the marine environment, reducing the current 
seismic gap and thus improving earthquake’s locaBon. 
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IntroducBon 

Recent decades have seen an almost conBnuous improvement in compuBng power and 
techniques; but the general scienBfic community too oWen misses out on these improvements. 
Research insBtuBons, both academic and industrial (public and private), typically provide 
employees with personal machines for their work, with even the least powerful of these capable of 
simulaBons, in serial and parallel, that would have required much more expensive hardware only a 
decade previously. Unlocking this potenBal is key to acceleraBng scienBfic discovery in every field, 
parBcularly where modelling is concerned. 

The calculaBons involved in forward modelling are oWen Bme-consuming, perhaps because of the 
number of calculaBons e.g., 3D models, or because the underlying model is very large, e.g., a 
global model. Reducing the Bme required for these models would improve program usability and 
lead to faster hypothesis tesBng. Simply relying on the relentless improvement of compuBng 
capabiliBes to increase program performance is sub-opBmal and many exisBng programs would 
benefit from relaBvely small alteraBons to their source code to fully uBlize these improvements. 

Here, we present a hybrid parallel program called ShellSet (May et al. 2023). ShellSet improves 
upon well-known and robust soWware by simplifying the user interface, removing all prompted 
user input, and reducing the Bme to result by employing an MPI (message passing interface) 
framework to run mulBple models in parallel. 

Sonware 

ShellSet (first presented in May et al., 2023) is a combinaBon of three programs which are well 
known within secBons of the geoscienBfic community, having been developed over recent 
decades, all of which are available from hLp://peterbird.name. 

Briefly, OrbData calculates the crust and mantle-lithosphere thicknesses at each node of a given 
finite element grid, adding a “lithospheric density anomaly of chemical origin” at each node which 
is adjusted to achieve isostasy with other nodes. OrbScore calculates the scores for any/all of the 
six Shells predicBons, for relaBve realism, against supplied real data. The six testable predicBons 



Session 3.3                    GNGTS 2024

are: relaBve velociBes of geodeBc benchmarks (GV); most-compressive horizontal principal stress 
direcBons (SD); long-term fault heave and throw rates (FSR); rates of seafloor spreading (SSR); the 
distribuBon of seismicity on the map (SC); and fast-polarizaBon direcBons of split SKS arrivals (SA). 

Shells is where the main forward model calculaBons occur. Shells uses the thermal and 
composiBonal structure of thin spherical shells of planetary lithosphere, together with the physics 
of quasi-staBc creeping flow, to predict paLerns of velocity, straining, and fault-slip on the surface 
of a planet. A primary goal of users has been to understand the balance of forces that move the 
plates while a secondary goal has been to predict fault slip rates and distributed strain rates for 
seismic hazard esBmaBon. 

Shells, OrbData and OrbScore are serial programs except for calls to Intel’s Math Kernal Library 
(MKL) to solve generated linear systems. To improve these programs, we leverage the power of 
parallel compuBng to create a single program, ShellSet, which allows mulBple models to be tested 
simultaneously. ShellSet, like Shells before it, uses MKL rouBnes with OpenMP style threads to 
solve its system of linear equaBons. While the combinaBon with OrbData and OrbScore moves 
inter-program interfaces from the user to the program - meaning a simplified user interface and 
further Bme savings. 

ShellSet Vs an exisBng model 

An example applicaBon of ShellSet is shown where we improve upon an exisBng global model 
(Earth5-049 in Bird et al., 2008).  
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We use ShellSet’s grid search model generator to automaBcally search the defined 2D parameter 
space for an opBmal model. The grid search contains 45 models, generated over 3 levels starBng 
with 9 models before generaBng a further 9 within the cell of each of the best 2 models at the first 
and second levels, see Fig. 1.  

Among the 45 models we find 8 models with an equal or improved (lower) geometric mean score. 
These 8 models can be seen in Tab. 1, along with the original score for the best model of Bird 2008 
(Earth5-049) and a re-run to account for newer soWware accuracy (New Earth5-049). 

Figure 1: Complete 3-level grid search history of 2D parameter space generated by ShellSet.
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Table 1: Searched models with improved Geometric mean score when compared to Earth5-049. 

ShellSet performance tesBng 

The performance of ShellSet can be measured in 2 ways. Firstly, Tab. 2 proves that running mulBple 
models in parallel can yield good performance improvement, even on a mid-level machine. It 
shows the Bme taken (mm:ss) for a given number of MPI processes to complete a set of models. 
The bracketed Bme is the speed up relaBve to the Bme taken by 1 process to complete the same 
number of models. This speed up is ploLed in Fig. 2. It is trivial to state that larger machines would 
offer more significant improvements or the ability to test higher numbers of models and processes. 

Model ID fFric tauMax

Earth5-049 0.10 18.10

New Earth5-049 0.10 16.58

10 0.07 16.50

28 0.04 16.34

29 0.07 16.29

30 0.10 16.55

31 0.04 16.49

32 0.07 16.50

33 0.10 16.58

35 0.07 16.55

36 0.10 16.56

1.50 *1012

1.83 *1012

1.50 *1012

1.17 *1012

G e o m e t r i c M e a n 

( )4 SSR*GV *SD*S A

2.00 *1012

1.83 *1012

1.50 *1012

1.17 *1012

2.00 *1012

1.50 *1012

1.17 *1012
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Table 2: Intel Core i9-12900 CPU at 2.4GHz desktop with 64GB RAM, 16 physical cores (8 performance, 8 efficient) and 
24 threads. 

MPI 
Processes

Models

1 2 4 8 16 32 64

1 3:50 7:47 16:06 32:33 64:26 128:39 262:09

2 X 5:12 (1.50) 10:19 
(1.56)

21:13 
(1.52)

42:06 
(1.53)

84:59 
(1.51)

172:33 
(1.52)

4 X X 7:59 
(2.02)

15:45 
(2.05)

32:05 
(2.01)

62:12 
(2.07)

125:49 
(2.08)

8 X X X 15:02 
(2.15)

29:35 
(2.18)

58:21 
(2.21)

113:03 
(2.32)

16 X X X X 29:31 
(2.18)

57:22 
(2.24)

111:15 
(2.36)

Figure 2: ShellSet speed up performance. The 16 worker speed up results are omiLed as they are similar to 8.
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Secondly, we know from experience that the simplified user interface and model input opBons 
greatly increase the program’s performance. The original programs worked in serial (1 model at a 
Bme using parallel MKL rouBnes) with the inter-program interfaces handled manually by the user, 
the newly opBmized program removes this requirement on the user by automaBcally feeding 
informaBon between the 3 consBtuent program parts. Not only do these automated connecBons 
offer a performance boost but they allow a “start and ignore” treatment of the program, meaning 
a user can simply begin a test and wait for the result with no further input required. 

The ability to uBlize parallel compuBng combined with a simplified user interface, ShellSet also 
includes a GUI to aid the user in setup, significantly widens the possible user base. This makes 
ShellSet accessible to anyone from seasoned researchers to master’s or even bachelor’s degree 
students whose research Bme may be limited. 
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An innovaBve machine learning algorithm for 
gravity modelling 
C. Messina¹, L. Bianco¹, M. Fedi¹, 

¹ Department of Earth, Environment and Resources Sciences, University of Naples “Federico II”, 
Naples, Italy 

We describe a Machine Learning algorithm for interpretaBon of gravity data generated by rather 
complex structures. We choose a ConvoluBonal Neural Network (CNN) with a U-Net architecture. 
This architectural design of the network has been recently applied in gravity modelling scenarios, 
in which the training dataset was built introducing  strong  prior informaBon about the source 
without obtaining a generalized training set. To overcome this limit we train the network through 
examples composed by labels consBtuted by simple elements, here called building blocks, with 
features being their corresponding gravimetric anomalies. Next to the training we test our method 
first analysing  gravity anomalies produced by simple structures (e.g., prisms, horizontal cylinders), 
and then with those generated by increasingly complex sources with irregular shapes, such as salt 
diapirs. We show examples of 2D-3D of real cases. We assume that a gravimetric anomaly can be 
seen as composed of the construcBve interference of anomalies generated by the edges of the 
source associated to building blocks. Moreover, this method streamlines decision-making and 
reduces computaBonal efforts involved in assembling a suitable dataset. 
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A data-driven supervised neural network 
approach for surface waves inversion: syntheBc 
and field data applicaBons 
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IntroducBon 

In near-surface applicaBons, S-velocity models are commonly obtained through the analysis of the 
dispersion characterisBc of the surface waves. One of the most popular approaches is 
the mulBchannel analysis of surface waves (MASW) which is a phase-velocity inversion method 
(Park et al., 1999). The forward operator involved in the computaBon of the dispersion curves 
presents two strong assumpBons: a 1D layered model and plane-waves. These limitaBons strongly 
affect the capability of the method to account for lateral velocity variaBons. To overcome these 
limitaBons, it is imperaBve to employ more sophisBcated methods such as Full Waveform Inversion 
(FWI). FWI is an inverse problem that exploits the full informaBon content of the seismic 
waveforms. TradiBonally it is solved through determinisBc approaches which seek to find a single 
best-fit model that explains the observed data. Even though this approach is computaBonally 
efficient it heavily relies on a good starBng model to reach convergence.  

The rapid advancements in algorithms and compuBng present an unprecedented opportunity for 
significant progress in seismic inversion, enabling the soluBon of previously infeasible problems 
through data-driven approaches. A promising avenue of research involves establishing a direct 
inverse mapping from observed seismic waveforms to subsurface structures through the training 
of neural networks using paired data of seismic waveforms and corresponding velocity models (Wu 
et al., 2018). These approaches seek to leverage the power of deep learning to learn complex 
relaBonships between seismic data and subsurface properBes, potenBally revoluBonizing the 
tradiBonal FWI methodology. However, the efficacy of learning-based methods stems from their 
ability to leverage vast amounts of high-quality training data, a challenge for seismic methods due 
to their high costs and confidenBality concerns that limit the accessibility of seismic data. In this 
study we introduce a novel approach that combines a reparameterizaBon of both the data and 
model parameters employing Discrete Cosine Transform (DCT) with neural networks to 
approximate the inverse operator. We tested our method in both syntheBc and field data from the 
InterPACIFIC project (Garofalo et al., 2016). Our objecBve is to conduct Bme-effecBve training to 
generate S-velocity models from the data. The proposed model could serve as a starBng point for a 
FWI frameworks, helping to miBgate the cycle skipping problem and reduce the number of 
iteraBons to reach convergence.  
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Methods 

We performed our training in DCT-domain as a strategy to reduce the memory storage of the 
dataset, to enable a flexible matching relaBon between input and output second dimensions using 
a versaBle number of coefficients, thereby facilitaBng the applicaBon of a reasonable number of 
geophones, and to reduce the number of model and data parameters during the learning process, 
leading to accelerate the training. The DCT is a linear orthogonal transformaBon that decomposes 
a signal into a combinaBon of cosine funcBons oscillaBng at varying frequencies (Ahmed et al., 
1974). To construct the Vs model dataset, we carefully selected a set of "base models" 
represenBng prevalent geological environments, including features like landslide, sinkholes, 
straBficaBon, layer displacements, and landfills. Subsequently, we generated mulBvariate normal 
random models by uBlizing the mean values of these base models and five disBnct covariance 
matrices. To compute the seismograms, we uBlized SOFI2D algorithm, an elasBc forward solver 
proposed by Bohlen (2002). We kept fixed the hyperparameters of the forward computaBon 
guaranteeing that the CFL condiBons were saBsfied, and for all the computaBons we employed a 
Ricker wavelet of 15 Hz. In this way we generated 9500 Vs-model and data as the training dataset, 
with an addiBonal of 500 for validaBon. 

Figure 1a depicts a schemaBc representaBon of the neural network, showcasing the 
transformaBon of both input seismograms and the output velocity model into the DCT domain. 
The architecture comprises an encoding-decoding stage, employing max-pooling and transposed 
convoluBon, respecBvely. The number of channels progressively increases from 64 to 1024, with 
each stage duplicaBng its number unBl reaching a latent space, before decoding the informaBon 
into the truncated DCT model dimension. Figure 1b displays the training and validaBon monitoring 
curves. ValidaBon is conducted on 500 seismograms and velocity models pairs that were not 
uBlized during the training process. The Mean Square Error (MSE) Loss funcBon is uBlized for 
monitoring the training (blue curve), alongside the L2-norm of the predicted data computed from 
the proposed model, serving as the validaBon metric (orange curve). Note that with an increase in 
the number of epochs, both the MSE and L2-norm decrease, indicaBng successful learning 
improvement by the network. However, aWer 1300 epochs (black-dashed curve), the loss funcBon 
reached convergence, and the L2-norm becomes unstable, suggesBng a potenBal occurrence of 
overfiZng during training. 
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Fig. 1 – (a) Scheme of the network architecture for a 3-shots acquisiBon array. The input data and output velocity 
models are in DCT-domain. (b) Training and validaBon are represented by the blue and orange curves, respecBvely. The 
analysis is confined to the iniBal 1300 epochs, as indicated by the black-dashed curve, unBl which convergence is 

achieved.  

Results 

To illustrate the capability of the trained network to propose Vs-models, it is presented below an 
example for syntheBc and field data. The field data was taken from the InterPACIFIC project which 
also includes Vs measurements in boreholes located at 10 m of the acquisiBon array. The borehole 
data was uBlized to validate the obtained results. The syntheBc data was constructed using the 
same array of the field data. The acquisiBon seZng consists of 48 receivers separated 1 meter, and 
3 sources (two off-end and one middle shots).  

SyntheBc data example: Figure 2 shows the network’s predicBon on the syntheBc example. The 
data was created using the same Ricker wavelet as the training dataset. In Figure 2a it is shown the 
true and predicted velocity model. Note that the trained network accurately predicts both the 
main features and magnitudes of the true velocity model. In Figure 2b, a comparison between the 
observed and predicted data is presented. It is noteworthy that the data exhibit a perfect match 
and do not show any signs of cycle-skipping.  

 

Fig. 2 – SyntheBc example: (a) S-velocity model predicted using the NN at epoch 1300. (b) Observed and predicted 

data comparison. 
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InterPACIFIC data example: Figure 3 presents the network's predicBon on a real dataset. To align 
the data with the training simulaBons, a low-pass filter with a cutoff frequency of 30 Hz was 
applied. The predicted data was computed using an esBmated wavelet derived from the observed 
data aWer filtering. In Figure 3a, the predicted model is depicted alongside a mean 1D Vs-model 
profile (black curve) derived from mulBple borehole measurements available from the InterPACIFIC 
project. Note that a significant high-low-high velocity contrast is observed in the borehole between 
15-18 meters depth, aligning well with the corresponding features in the predicted model at that 
posiBon. The network proposes a layered model with a velocity range consistent with those 
obtained from the borehole measurements. In Figure 3b it is shown the comparison between 
observed and predicted data. It is noteworthy that the data exhibits excellent agreement, except 
for traces located between the distances 30-40 meters. Despite this, the data does not present 
cycle-skipping, meaning that the predicted model is a very good starBng model proposal for an 
FWI framework. 

 

Fig. 3 – Field data example: (a) S-velocity model predicted using the NN at epoch 1300. (b) Observed and predicted 

data comparison. 

Conclusions 

We introduced a Bme-efficient neural network training in DCT-domain. The construcBon of the 
training and validaBon datasets was completed in parallel within 3.8 hours. The training process to 
reach epoch 1300 took 7.6 hours, and the required Bme to propose a model using the trained 
network and conduct the inverse DCT is 0.2 seconds. All these algorithms were performed in a 
computer system powered by a 12th Gen Intel(R) Core (TM) i9-12900KF equipped with NVIDIA 
GeForce RTX 3080 Ti graphics card and the system runs with CUDA Version: 11.8. 

The use of DCT compression is an opBmal strategy in neural network training, offering significant 
advantages. This approach notably reduces the memory requirement from 21 to 1.2 gigabytes, 
resulBng in a 94% reducBon in memory usage. Moreover, the computaBonal cost during training is 
decreased by 74% with respect a full-domain training. Finally, the DCT compression enables 
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pracBcal training with a reasonable number of geophones since the number of coefficients in the 
DCT can be readily adjusted to align with both the data and model requirements. 

We demonstrated the trained network's capability in generaBng data-driven S-velocity model 
proposals with minimal data misfits between observed and predicted data. ModificaBons in array 
seZngs and source characterisBcs may necessitate retraining the network, which, under similar 
hyperparameters as presented in this work, requires approximately 11.4 effecBve hours. The 
proposed S-velocity model can serve as a starBng model for FWI frameworks, offering the potenBal 
to reduce computaBonal costs and address the cycle-skipping issue. 
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IntroducBon 

Post-stack seismic data analysis plays a crucial role in understanding subsurface structures and 
petrophysical  properBes,oWen associated with a peculiar low or high frequency behaviour. Sinha 
et al. (2005) highlighted the presence of low-frequency shadows in associaBon with hydrocarbon 
reservoirs, emphasising the significance of low-frequency informaBon in post-stack seismic data for 
reservoir characterizaBon. Moreover, the applicaBon of discrete wavelet transform-based mulB-
resoluBon analysis for spectral enhancement in post-stack seismic data was discussed by Camacho-
Ramírez et al., 2016,which remarked on the role of frequency analysis in characterising heavy oil 
reservoirs. Reiser & Bird (2016) presented case studies of broadband quanBtaBve interpretaBon, 
emphasising the uBlisaBon of frequency-related informaBon for improved target delineaBon and 
esBmaBon of reservoir properBes from post-stack seismic data. AddiBonally, Du et al. (2016) 
addressed the challenges of low signal-to-noise raBo and the importance of considering the main 
frequency and signal-to-noise raBo of seismic data for thin beds interpretaBon in post-stack 
seismic data. Furthermore, Karsli et al. (2006) discussed the applicaBon of complex-trace analysis 
for random-noise suppression and temporal resoluBon improvement in post-stack seismic data, 
emphasising the significance of frequency-related analysis for enhancing data quality, while Shi et 
al. (2009) addressed near-surface absorpBon compensaBon technology and its applicaBon in the 
Daqing Oilfields, stressing the importance of frequency-related compensaBon techniques for 
improving the resoluBon of post-stack seismic data. Moreover, Chopra et al. (2003) discussed high-
frequency restoraBon of surface seismic data, indicaBng the relevance of frequency-related 
restoraBon techniques for enhancing the resoluBon of post-stack seismic data.Therefore, post-
stack seismic data analysis encompasses various dedicated frequency-related analyses and 
methodologies, emphasising the significance of low and high-frequency informaBon for reservoir 
characterizaBon, aLribute predicBon, noise suppression, and resoluBon enhancement. 

In fact, low and high-frequency extrapolaBon from acBve seismic data is essenBal for various 
applicaBons such as imaging, reservoir characterizaBon, and monitoring. Classical methods for low-
frequency extrapolaBon involve techniques such as full-waveform inversion (FWI) and 
autoregressive (AR) spectral extrapolaBon. FWI with extrapolated low-frequency data has been 
proposed as an effecBve method for determining the low-wavenumber components of the model 
from extrapolated low frequencies (Sun & Demanet, 2020). AddiBonally, the autoregressive 
extrapolaBon method has been uBlised to extend the spectral bandwidth of seismic data, enabling 



Session 3.3                    GNGTS 2024

the recovery of missing low and high frequencies for acousBc impedance inversion (Karsli, 2010; 
Karsli, 2006). In recent years, deep learning approaches have gained aLenBon for low-frequency 
extrapolaBon from seismic data. Ovcharenko et al. (2019) and Li & Demanet (2016) have proposed 
applicaBon of deep learning - specifically convoluBonal neural networks - for low-frequency 
extrapolaBon, showing promising results in extrapolaBng low frequencies from mulB-offset seismic 
data. Furthermore, machine-learning-based data recovery has been suggested for simultaneous 
deblending, trace reconstrucBon, and low-frequency extrapolaBon, indicaBng the potenBal of 
deep learning in addressing mulBple challenges in seismic data processing (Nakayama & 
Blacquière, 2021). MulB-task learning has been proposed for addressing low-frequency 
extrapolaBon and elasBc model building from seismic data, showing the potenBal of integraBng 
classical physics-based methods with deep learning techniques (Ovcharenko et al., 2022). In 
addiBon to low-frequency extrapolaBon, high-frequency extrapolaBon from seismic data has also 
been a focus of research. Ovcharenko et al. (2020) emphasised the importance of low frequencies 
in high-frequency land seismic data due to the elasBc nature of the Earth's subsurface, highlighBng 
the significance of low-frequency extrapolaBon in addressing the challenges associated with high-
frequency data inversion. Furthermore, a 1-D phase-tracking method has been proposed for 
extrapolaBng low-frequency data based on phases and amplitudes in the observed frequency 
band, indicaBng the significance of considering different dimensions for effecBve extrapolaBon (Li 
& Demanet, 2016). 

Methods 

We propose a novel 1-D approach based on LSTM (Long Short-Term Memory) Neural Networks 
(NN) to address the low- and high-frequency gap (i.e. null space) in reflecBon seismics. We trained 
two different NNs: one is trained to infer a lower frequency output from a higher frequency signal, 
from now on called low-frequency model, and another with switched input and output, from now 
on called high-frequency model, with both the input and output assumed to have maximum 
phase. The training dataset is generated using a convoluBonal approach. The data generaBon 
process involves creaBng syntheBc noisy seismic traces for training, considering modificaBons to 
the classical seismic convoluBonal model to enhance its generalizaBon to beLer mimic real seismic 
data. The NN is trained with a custom loss funcBon that includes both amplitude and frequency 
components. 

The method is easily scalable thanks to the fact that the NN operates without direct consideraBon 
of frequency, Bme length and sampling informaBon, enabling the generaBon of desired frequency 
output just by adjusBng how the input data is sampled. The  NN will undergo the training based on 
a parameter known as Sample DuraBon (SD), represenBng the esBmated duraBon of the source 
wavelet. We have the flexibility to resample each input signal provided to the network to align 
with the sample duraBon exploited in NN training. SD serves as the crucial parameter governing 
frequency content generaBon, enabling the network to produce new frequencies in accordance 
with it. Since it is not always easy to determine SD on field data, we use the second zero of the 
auto-correlaBon to make it easier to get and more objecBvesuch a parameter. Once we have 
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trained the NN we can scale every signal to the trained SD and make the inference that will output 
a signal with half the frequency, for the Low-frequency model and one with a double central 
frequency, for the High-frequency model. Thanks to the constraints given by the custom loss 
funcBon with the frequency counterpart taken into account, we are able to further generalize the 
results to other frequencies just by applying a Scaling Factor (SF), i.e. a factor applied to the SD 
therm that mulBplies the number of samples in the output. This feature allows us to infer quite 
easily different frequency predicBons. In Figure 1 we plot some of these predicBons with varying 
SF: low-frequency model in Figure 1A where the input SD is divided by the SF and high-frequency 
model, in Figure 1B, where the SD is mulBplied by the SF. The input in both of these results is a 
frequency filtered version of the Viking Graben Line 12 (Keys and Foster, 1998), filtered with a 
band-pass filter at 6-20Hz. 

 

Figure 1: Low (A) and High (B) frequency inference of the Viking Graben Line 12 on the x-axis frequency, and on the y-
axis the Scaling Factor. The solid line in A and B marks the chosen frequency that will be used in the next secBon. 

Results and Discussion 

Low Frequency inference 

Results of the applicaBon of the methodology are shown in Figure 2. We moved the central 
frequency from 14Hz to 8Hz, as shown in the amplitude-frequency plot in Figure 2C. If we compare 
the input (Figure 2A) and the predicBon (Figure 2B), it is clear that, as expected from the low 
frequency counterpart, more importance is given to main reflectors, e.g. horizontal reflector at 2s 
in the data. We can furthermore appreciate that amplitude is preserved as expected and 
interference is properly predicted, e.g. in the wedge around 1s in the first 750m . 
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Figure 2: Low frequency inference on a secBon of the Viking Graben dataset: A represents the input data, B the low-
frequency version and C the amplitude spectra of the seismic line depicted in A (blue)- and in B (orange). 

High Frequency inference 

For the High-Frequency model, the data shown in Figure 1B is depicted in Figure 3. Since the data 
had the predicted range of frequency in the raw data, we take now into account 2 different data: 
Figure 3A is the NN input with central frequency of 14Hz, as used in Figure 2, while in Figure 3C we 
show the reference data, i.e. the raw data aWer  a 10-40Hz band-pass filter. 
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Figure 3: High frequency inference on a secBon of  the Viking Graben dataset: A represents the low-filtered data, the 
same used in Figure 2A, B is the high frequency inference, and C represents the high frequency reference data. The 
amplitude spectra of the seismic line depicted in A (Orange), in B (Green), and C (Blue) are reported in D. 

Thanks to this, we can make a proper comparison between the input (Figure 3A),  the predicBon 
(Figure 3B) and the reference data (Figure 3C). If we focus on the strongly dipping reflector marked 
with black and red arrows, we can see that while the predicBon matches preLy well the reference, 
this feature was not visible (black arrow) or barely visible (red arrow) in the NN input. Further 
focus should be put on the diffracBon paLerns pointed out with the blue arrows: while the match 
is very good between NN predicBons and reference data (i.e. Figure 3B and C), hyperbolas are 
difficult to be interpreted in the input lower frequency data (i.e. Figure 3A). 

In order to further evaluate the results of the two models, we focus on the area from 120-1250m 
and from 0.6-1.3s (see e.g. Figure 2A). This area is very interesBng because it images a typical 
wedge structure. In Figure 4 we present a wiggle plot of the input (Figure 4A) and the high-
frequency inference (Figure 4B). 
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Figure 4: Wiggle plot of the area between 0.6s-1.3s and 120m-1250m of the Viking Graben dataset, focusing on a 
wedge structure. The input seismic line is shown in A, while the high frequency predicBon of the same area is depicted 
in B. 

In Figure 4B, the prompt detecBon of coherent signals is evident, notably horizontal reflectors 
beneath and within the wedge structure. Despite the limited leWward extent of the secBon, there 
is a remarkable improvement in verBcal resoluBon, potenBally enabling the idenBficaBon of pinch-
out structures. 

Conclusions 

We introduce a novel 1-D approach based on LSTM (Long Short-Term Memory) Neural Networks 
for addressing the low- and high-frequency gaps in seismic signal processing. The proposed 
method involves training two disBnct neural networks: a low-frequency model, trained to infer 
lower frequency output from higher frequency signals, and a high-frequency model, trained with 
reversed input and output. 

The method's scalability is assured  thanks to its ability to operate without direct consideraBon of 
the frequency components, Bme length, and sampling informaBon. The NN is trained with a 
custom loss funcBon that incorporates both amplitude and frequency components. A crucial 
parameter known as Sample DuraBon (SD) governs the frequency content generaBon during 
training, providing flexibility for adjusBng input data sampling and, consequently, the generated 
frequency output. The method's adaptability is demonstrated by rescaling signals to the trained 
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SD, allowing the inference of different frequencies through the applicaBon of a dedicated Scaling 
Factor (SF). 

The results illustrate the effecBveness of the proposed approach in both low and high-frequency 
inferences using exemplary seismic data from the Viking Graben Line 12. The low-frequency model 
successfully shiWs the central frequency from 14Hz to 8Hz while preserving amplitude and 
accurately predicBng signal interference. The high-frequency model demonstrates reliable 
inference when compared to reference data the applicaBon of  a band-pass filter between 
10-40Hz, revealing a beLer detectability  of different features, such as dipping reflectors and 
diffracBon paLerns, that were challenging to interpret in the lower frequency input data, while are 
confirmed by the reference data. 

Overall, the proposed LSTM Neural Network-based approach proves to be a promising soluBon for 
addressing frequency gaps in seismic signal processing, offering high adaptability, scalability, and 
enhanced predicBve capabiliBes for both low- and high-frequency components predicBons. 
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1. MoBvaBon 

In the recent years, Bme-lapse surveys have been performed widely to monitor, for instance, 
hydrogeological tracer experiments (Cassiani et al., 2006), groundwater watershed characterizaBon 
(Miller et al., 2008; Deiana et al., 2018), seasonal variaBons (Hiblich et al., 2011; Musgrave and 
Binley 2011), landslide behaviour and evoluBon (Cassiani et al., 2009, Wilkinson et al., 2010), and 
so on. One of the main concerns, when resisBvity surveys are performed, is to be sure to impute 
the variaBons to the right phenomena, disBnguishing the electrical changes of interest from all the 
others, which are assumable as noise. Temperature variaBons might represent the main noise 
source in the Bme-lapse conducBvity surveys since temperature has a strong impact on the 
resisBvity parameters, hence the inversion results. For example, seasonal temperature trends 
could mask the conducBvity variaBons, and thus lead to misleading interpretaBons, up to the 
depths from the surface that can be reached by external fluctuaBons. Haley et al. (2007; 2009; 
2010) have pointed out the importance of considering the temperature variaBons in Bme-lapse 
geoelectrical surveys, including in the inversion procedure a correcBon for this effect. In this study 
we intend to disentangle the temperature effect from resisBvity variaBons inverBng for the 
thermal diffusivity of the medium in a simultaneous Bme-lapse inversion that does not require 
direct temperature measurements below ground, both on a syntheBc dataset and on-field 
experiments.  

2. Inversion scheme 

The temperature effect on electrical resisBvity is modelled through the equaBon proposed by 
Haley (2007): 

                                                                                         (1) 

where: 
i) σT and T are effecBve electrical conducBvity and temperature. 
i)  σ25 is the reference conducBvity of the material at 25°degrees. 
ii)T25 is the convenBonal temperature of 25 °C. 
iii)m is the fracBonal change in electrical conducBvity per degree Celsius. 

The temperature is defined in the enBre medium solving for the het equaBon: 

                                                                                         (2) 

σT = (1 + m(T − T25))σ25

∂T
∂t

= k
∂2T
∂z2
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Where, as depicted in Fig. 1, the temperature at the boLom of the model is considered constant, 
while the surface temperature varies seasonally. For any given thermal diffusivity , the 
temperature can be esBmated through the numerical soluBon of eq. 2 at each Bme instant and 
each depth. 

Time-lapse 2D DC data are then inverted simultaneously in EEMverter (Fiandaca et al., 2024), using 
as model space the electrical resisBvity at 25 °C in each inversion cell of all Bme-lapse models and 
a unique thermal diffusivity value  for the enBre 2D profile. The sensiBvity on the thermal 
diffusivity is retrieved enforcing Bme-lapse constraints between all Bme-lapse models, which 
favour the inversion models that minimize variaBons through the correct evaluaBon of the 
temperature effect. The asymmetric generalized minimum gradient support (AGMS) introduced by 
Fiandaca et al. (2015) has been used for Bme-lapse constraints. 

 

Figure 1. SchemaBzaBon of the heat flux equaBon solved for the model discreBzaBon. Surface and boLom 
temperatures of the model need to be fixed as boundary condiBon within this inversion scheme. 

3. SyntheBc simulaBon and fieldwork case study 

SyntheBc simulaBons have been performed mimicking the seasonal variability of subsoil 
temperature caused by a homogeneous thermal diffusivity, constant temperature at depth and 
seasonal-varying surface temperature. On top of the temperature-induced changes in resisBvity, a 
growing plume had been modelled, with 75-100 Ωm 25 °C resisBvity in a homogeneous 150 Ωm 
halfspace. Nine Bme steps have been modelled, with 50 days of Bme difference, and all Bme-steps 
have been inverted simultaneously with AGMS Bme-lapse constraints.  
Fig. 2 presents the comparison of the models obtained with: i) the standard resisBvity inversion; ii) 
the simultaneous Bme-lapse inversion with temperature correcBon. Not only the Bme-lapse 
inversion retrieves the correct resisBvity distribuBon, not altered by the temperature effect, but 
the simulated thermal diffusivity is retrieved correctly by the inversion.  
As field example, a 730 days-long real experiment is analyzed. The temperature effect is clearly 
visible in data space, with apparent resisBvity variaBons clearly correlated with surface 
temperature (Fig. 3). The survey has been carried out conBnuously on the rooWop of an MSW 
landfill, with stainless-steel electrodes whose posiBon never changed for the whole duraBon of the 
study. The daily ERT (Electrical ResisBvity Tomography) acquisiBons were performed through 18 
electrodes, spaced 5 meters from each other, with the Wenner-Alpha array configuraBon and 5 mA 
alternate currents injected with the frequency of 5 Hz. The result of this survey clearly shows a 

k

k
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sinusoidal fluctuaBon of the apparent resisBvity values during the Bme and with decreasing 
magnitude with depth (Fig. 3, upper panels). This decreasing fluctuaBon points out the effect of 
the temperature variaBon on the external porBons of the landfill, which vanish increasing the 
depth of analysis, as evident when comparing the apparent resisBvity values and the temperature 
measured at the site (Fig 3, boLom panels). The deeper porBons of the landfill, despite the 
presence of more noise measurements, show more stable apparent resisBvity values through Bme, 
therefore less effect of the atmospheric temperature trends. Time-lapse inversions with modelling 
of temperture effect show much smaller resisBvity variaBons throughout the enBre monitoring, 
showing the improvement of the Bme-lapse scheme proposed in this study. 

 

Figure 2. Comparison of standard resisBvity inversion (boLom panel) and Bme-lapse inversion with modelling of 
thermal diffusivity (top panel). 
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Figure 3.  FluctuaBon of apparent resisBvity recorded within the body waste (blue lines) with different depths during 
the 740 day-long survey. The red lines in the below graphs represent the mean value of temperature for each survey 
day. 

4.  Conclusions  

In this study a new Bme-lapse inversion scheme for modelling temperature effect in DC monitoring 
experiments is presented. The modelling scheme esBmates the thermal diffusivity of the subsoil 
through the simultaneous inversion of Bme-lapse data, without the need of a direct measurement 
of the subsoil temperature. Both syntheBc test and analysis of real data, acquired in a 730 days 
long monitoring experiment on an MSW landfill, show the potenBal of this new inversion scheme, 
which enable to disentangle temperature effects from resisBvity variaBons induced by changes, for 
instance, of the groundwater coducBvity. 
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INTRODUCTION 

Mono-channel recording systems with a Boomer seismic source are very cheap and can 
be easily deployed in sensitive environments such as lagoons or busy harbours (Zecchin 
et al. 2008). The price paid for these advantages is the lack of signal redundancy typical of 
multi-channel records, which makes it possible to estimate wave propagation velocity and 
angle-dependent reflectivity, and to improve the signal-to-noise ratio by stacking or 
migration. In this paper, we show that some of this information can be obtained by 
inverting the amplitudes and traveltimes of shallow primary reflections and their multiples, 
using a single offset in a Boomer survey. 

Amplitudes and traveltimes can in principle be inverted separately, but doing so we do not 
use the information redundancy embedded in the velocity: it determines both the 
traveltimes along the ray paths and the amplitude of primaries and multiple reflections via 
the acoustic impedance contrasts at the layer interfaces. Therefore, the coupling of these 
two inversion algorithms can extract more information from our minimal data set. The 
possible ambiguities of one inversion can be limited by constraints coming from the other 
inversion, so improving the stability of both. 

AMPLITUDE AND TRAVELTIME INVERSION 

The simplest object function we can create for a joint inversion of amplitudes and 
traveltimes is the sum of the squared differences between measured and modeled data, 
minimizing it as a function of the Earth model parameters: 

 Object(Tj, Aj, V, L, ρ) =  +   , (1) 

where Tj and Aj are the measured traveltimes and amplitudes of primaries and multiples in 
a single trace. We assume a 1D Earth model, with the data compensated for the 
geometrical spreading – (e.g., by a t2 gain function). We note that the modeled traveltimes 
t(V, L) depend on the layer velocity V and the layer thickness L, but not on the density ρ. 
Similarly, the modeled amplitudes a(V, ρ) do not depend on the thickness L. Therefore, a 
separate inversion of amplitudes and traveltimes can avoid cross-talk between density and 
thickness. On the other hand, the velocity V influences both the amplitude (via the acoustic 

∑
j

[Tj − t (V, L)]2 ∑
j

[Aj − a(V, ρ)]2
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impedance I = ρ V) and the transit time in a layer (via the ratio LV = L / V). Since the Earth 
model must be consistent with both data sets, the velocity value must be the same for both 
inversion solutions. Another condition for the two inversion algorithms is the stability of the 
acoustic impedance I and the transit time LV against random noise, which we found in 
several tests with synthetic data. Therefore, each of these values is a well-constrained part 
of the two separate solutions, and we imposed that they are kept constant, while we 
perturb the values of velocity, density and thickness. 

 

Fig.1 – Earth model simulating a mud volcano. Although the model is 2D, the simulation and inversion are 
carried out in 1D only, so assuming just slow lateral variations. 

APPLICATION EXAMPLE 

To test the stability of this coupled inversion, we built an Earth model (Figure 1) that 
mimics a mud volcano. Its cone makes the water depth variable, while the water density 
and velocity are constant and known (1500 m/s and 1 gr/cc, respectively). Our target is the 
first layer below the seafloor, which consists of sediments with P velocity and density that 
vary laterally and reach a minimum in the center of the volcano. The basement is again 
homogeneous. We simulated by ray tracing only primaries and multiples from the seafloor 
and the sediment layer base, with an offset of 10 m between source and receiver. 

For the velocity inversion we need the two primaries of the latter ones, plus one or more 
multiples as peg-leg, intrabed or “simple” (Vesnaver and Baradello 2022a, b). The more, 
the better, because redundancy can reduce random noise due to picking errors and 
spurious events. For the amplitude inversion, we instead used only the primary and two 
reverberations between seafloor and sea surface to limit our solution space to the only two 
parameters we want to estimate, i.e., sediment velocity and density (Vesnaver and 
Baradello 2023). Including the amplitude of the other multiples is not so helpful: doing so, 
we would also have to calculate the velocity and density of the bedrock, leading to further 
unknowns and instabilities in our inversion. 
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Figure 2 shows the inversion results obtained by adding random noise of 0.1% to the 
amplitudes and traveltimes of 300 seismic traces, which corresponds to only a few 
samples.  

 

Fig.2 – Amplitude and traveltime inversion when a random noise percentage of 0.1% is added to the 
synthetic data. The smoothed, scaled estimate (dotted red line) fits well the true model (dashed yellow line). 

To improve the stability of the inversion, we also introduced a lateral smoothing filter with a 
window length of 31 samples. The instability in the initial estimates (solid blue line) is 
completely removed by the smoothing and scaling (dotted red line), so that this curve 
practically matches that of the true model (dashed yellow line). 

When the random noise increases to 0.5% (Figure 3), the estimated velocity is definitely 
unstable, but again the smoothed, scaled version (dotted red line) is not too far from the 
correct solution. The weakest estimate is that of density, which still correctly identifies a 
minimum value at the center of the mud volcano. 

CONCLUSIONS 

The lack of redundancy of a minimal survey, such as a mono-channel Boomer system, can 
be partially compensated for by interpreting and inverting the amplitudes and traveltimes of 
primaries and multiples. However, such an inversion requires a separate but coupled 
inversion of the dynamic and kinematic data to limit the crosstalk of physically independent 
variables. 

The results obtained with different noise levels show that we can obtain an encouraging 
estimate even for density when the signal-to-noise ratio is very good. This information is 
important for offshore engineering and marine geology. 
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Fig.3 – Amplitude and traveltime inversion when a random noise percentage of 0.5% is added to the 
synthetic data. The unfiltered estimate (solid blue line) becomes unstable, especially for the velocity, but the 
smoothed, scaled version for all estimates (dotted red lines) remains fairly good. 
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