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An accurate seismic hazard assessment requires reliable estimates of the local site response. 
However, commonly used empirical methods have significant limitations. For example, the standard 
spectral ratio (SSR) requires many high-quality earthquake recordings, making it impractical in 
regions with low to moderate seismic activity. The horizontal-to-vertical spectral ratio (HVSR) 
method often fails to accurately determine amplification factors. The noise-based SSR technique 
can be biased by anthropogenic noise sources. Furthermore, these methods all neglect the complex 
form of the response, as well as the cross-coupling effects among ground motion components. 

This study addresses two key questions: (1) Can a broadband complex site response function (CSRF) 
be reliably estimated using only ambient seismic noise, and (2) can such a CSRF be used to synthesize 
realistic virtual seismograms for earthquakes arriving from arbitrary azimuths? 

This study, present a new methodology that combines the extended hybrid standard spectral ratio 
and cross-coupling inversion methods. This approach eliminates the need for earthquake recordings 
and enables retrieval of the complete 3×3 CSRF tensor. Using three stations, a bedrock station, a 
soil "bridge" station, and a basin target station, the CSRF has been computed. Then, by convolving 
the computed CSRF with the earthquake recorded at the bedrock station, the virtual seismograms 
at the target station are generated. 
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Introduc%on  

Loca3ng seismic events is a rou3ne ac3vity for monitoring both natural and anthropic seismic 
ac3vity. Distributed Acous3c Sensing (DAS) technology offers a novel category of seismic data that 
can be used to improve event loca3on both at regional and local scale (Piana Agos3neG et al., 
2022; Bozzi et al, 2024). However, being a distributed measurement along a Fiber Op3c (FO) cable, 
DAS data strongly suffers from error correla3on among close-by measurement points (so called 
DAS channels). Not considering such correla3on means assuming DAS measurement for each 
single channel as an independent measurement, which is obviously not correct. A widely used trick 
in fiber op3c seismology is to “downsample" DAS data and, thus, include in monitoring workflow 
only a limited number of DAS channels. However, such strategy suffers from two main drawbacks: 
(a) the number of DAS channels to be used is generally user-defined, meaning that different 
experts could make different choice in “downsampling” the dataset, and (b) downsampling 
drama3cally reduces the poten3al of DAS data in loca3ng seismic events, which is based on the full 
recording of the seismic wavefield at unprecedented dense spa3al sampling. In this study, we 
demonstrate that accoun3ng for error correla3on in near-by DAS channels robustly improves 
seismic event loca3ons, enabling the full use of DAS data in seismic monitoring. Being enable to 
es3mate and to include the full error covariance matrix of a DAS dataset, coupled with a Bayesian 
approach in seismic event loca3on, gives us the possibility of es3ma3ng more accurate and more 
precise loca3on of seismic events, and more realis3c uncertain3es in event loca3on. The algorithm 
is presented using real-world cases, where seismic sources are man-made in known loca3ons. 

Data and Methods 

We made use of the DAS recordings for two different experiments, at INGV Pisa and INGV 
Gro]aminarda, where a FO cable has been trenched at shallow depth. In Pisa, the FO cable was 
installed in a a small green area close to INGV building, covering a rectangular area of about 20x30 
meters. The seismic source was a hammer hit, repeated 3 3mes in five different loca3ons, both in 
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the centre and on a side of the small green area 
(Figure 1).  

Figure 1: DAS experiment seTng in Pisa: (a)  green area close 
to the INGV building where he FO cable was trenched; (b) 
Sketch of the FO cable geometry from the field notes; and (c) 
geometry of the FO cable as derived from notes and tap-
tests data. 

In Gro]aminarda, the FO cable was installed 
outside the INGV building, in a near-by field with a 
triangular geometry, with sides of length between 
50 and 100 meters. The seismic source was a 
seismic gun, “Energizzatore per seismica Iso]a”, 
and 7 shots where operated in different posi3ons 
rela3ve to the FO cable, both inside and outside of 
the triangle (Figure 2). 

  

Figure 2: DAS experiment seTng in Gro[aminarda: geometry of 
the FO cable as derived from notes and tap-tests data, together 
with controlled source posi?ons. 

As shown in the strain-rate recordings, the full seismic 
wavefield can be visually inspected in the DAS data, 
and more seismic phases can be used for loca3ng the 
event (Figure 3). However, graphical picking tool (e.g. 
Xdas, Traba]oni, 2024) can introduce correla3on in 
the picking errors, due to the fact that the picking is 
derived from a con3nuous line, drawn on the original 
data. 

Figure 3: Example of controlled source data recorded in Gro[aminarda. (a) the original data; and (b) the graphical 
picking of a seismic phase that can be seen along the en?re cable, used for loca?ng the event. 

We perform the loca3on of the controlled-source events using the approach presented in Riva et 
al. (2021) and modified to account for a full covariance matrix of the errors. Based on a Markov 
chain Monte Carlo algorithm, such approach is able to extract poten3al “solu3ons” (i.e. event 
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loca3on) from the Posterior Probability Distribu3on (PPD) of the inves3gated parameters. Thus, 
the modifica3on required to the original code was only limited to the computa3on of the 
Likelihood of each proposed solu3on. As a reference, we also perform the loca3on using the 
original algorithm, where a diagonal covariance matrix of the errors is considered.  

Results 

Our preliminary results indicate that: (1) errors in DAS data are strongly correlated, as expected, up 
to a 10-15 channels away in our examples; and (2) the ra3o between the es3mated uncertainty 
and the mis-match between true and es3mate solu3ons is generally lower than 2, if error 
correla3on is considered (i.e. it means that loca3on is generally within 2-sigma from the true 
loca3on), while it is generally larger than 4 when error correla3on is not included in the workflow 
(Figure 4). 

Figure 4: loca3on of a controlled-source event using: (a) diagonal covariance matrix of the error, i.e. considering all 
DAS measurements as independent; and (b) full covariance matrix of the error, i.e. including correla3on in the errors 
on the P-wave picking for near-by DAS channels. The yellow stars indicate the true posi3on of the source, the blue dots 
represent poten3al solu3ons (i.e. solu3ons extracted form the PPD), and the green dots show the DAS channel 
loca3ons. 
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Distributed Acoustic Sensing (DAS), a technology that transforms fiber-optic cables into dense 
seismic arrays, has rapidly become a widely used tool for a broad range of Earth and environmental 
studies, both onshore and offshore. With the aim of improving our understanding of DAS 
instrumental response, this research explores the potential of DAS data for near-surface imaging 
through surface-wave analysis.  

We present results from a case study in northern Italy, at the margins of the Northern Apennines, 
an area of tectonic interest due to the possible surface emergence of a major fault system, the 
Stradella thrust, located about 50 km south of Milan. This south-dipping structure represents the 
western segment of the Pede-Apennine Thrust Front, situated in the rear of the Emilia Arc thrust 
system. 

Regional studies carried out for hydrocarbon exploration, based on industrial seismic reflection 
profiles and deep well logs, provide valuable insights into the crustal structure and its characteristic 
fold-and-thrust geometry. However, their resolution decreases in the uppermost few hundreds of 
meters of the crustal succession. This limitation underscores the need for near-surface imaging, 
which is essential to assessing the possible tectonic deformation affecting the younger Quaternary 
deposits in the study area. 

Thus, two fiber-optic cables with a total sensing length of about 550 m were deployed at the site, 
and both active and passive DAS data were analyzed to construct a two-dimensional surface-wave 
velocity model. The results are compared with those obtained from traditional geophone arrays, 
including horizontally polarized sensors, in order to evaluate the relationship between the axial 
strain measured by DAS – its intrinsic DAS observable – and the horizontal ground motion in the 
same direction recorded by geophones.  

At the same site, a single-station ambient-noise survey was conducted to produce contour maps of 
the main seismo-stratigraphic reflectors using an independent method. Complementary electrical 
resistivity tomography (ERT) data were also collected.  
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We discuss the comparison between all datasets, highlighting the potential and limitations of DAS 
for near-surface characterization, as well as possible directions for future developments. 

Data and Resources 

The DAS data were collected within the PRIN project “NASA4SHA – Fault segmentation and 
seismotectonics of active thrust systems: the Northern Apennines and Southern Alps as laboratories 
for new seismic hazard assessments in northern Italy” (University of Milano-Bicocca research unit, 
coordinated by A. Tibaldi; Principal Investigator R. Caputo, University of Ferrara)." 

The other data were collected from the University of Bologna. 
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Introduction 
 
Recovering seismic velocity and attenuation in geologically complex environments remains one of 
the most demanding problems in full waveform inversion (FWI). In viscoacoustic media, strong 
intrinsic attenuation, amplitude decay, and phase distortions often coexist with strong low-velocity 
anomalies, generating shadow zones that significantly limit the reliability of classical deterministic 
inversions.  
The Valhall field provides a synthetic example where a shallow gas cloud induces a marked 
depression in P-wave velocity (Vp) and a strong reduction in the quality factor (Qp). These effects 
significantly complicate the joint recovery of Vp and Qp, and conventional grid-based FWI often 
struggles to produce stable and interpretable attenuation models (Yong et al. 2024). 
Implicit neural representations have recently gained attention as a viable alternative to traditional 
grid-based parametrizations for waveform inversion. Instead of discretizing the subsurface on a 
fixed mesh, INRs use neural networks that map spatial coordinates to physical properties in a 
continuous domain. Among these approaches, SIREN networks, based on sinusoidal activations, 
provide excellent expressivity for oscillatory fields and smooth geophysical structures, while 
producing high-quality gradients for optimization (Sitzmann et al. 2020). Their continuous 
formulation makes them resolution-independent, inherently multi-scale, and capable of capturing 
complex spatial patterns using far fewer parameters than finite-difference grids and employing 
random starting points. 
In this work, we apply an implicit viscoacoustic FWI (IFWI) based on SIREN networks to the synthetic 
Valhall model. The model contains a pronounced shallow gas cloud producing both a strong velocity 
depression and an associated attenuation anomaly.  
The inversion follows a sequential strategy: first, the Vp is estimated while keeping Qp fixed; then 
the recovered Vp is held constant while Qp is inverted. This approach mitigates the well-known 
cross-talk between velocity and attenuation and stabilizes the estimation of Qp, which is highly 
sensitive to inaccuracies in the velocity model. 
To further enhance resolution, we complement IFWI with a short deterministic FWI stage applied 
to the grid-sampled models. This hybrid strategy combines the stability and regularizing behavior of 
INRs with the fine-scale resolving power of classical deterministic inversions. 
To evaluate the performance of the proposed workflow, we also perform a traditional deterministic 
viscoacoustic FWI starting from smoothed versions of the true models. This baseline represents an 
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idealized deterministic scenario and therefore provides a strong benchmark for assessing 
improvements introduced by IFWI. 
 
 
Method 
 
The subsurface properties are represented through an implicit neural network !!(#), where the 
parameters % define continuous functions for Vp and Qp at any spatial coordinate # = (', )). Two 
separate SIREN networks are employed, one for Vp and one for Qp. Each network consists of two 
hidden layers with 128 neurons each, using sinusoidal activations modulated by a frequency factor 
of 10 that enables accurate representation of high-frequency spatial variations. This architecture 
provides a balance between expressive capacity and computational efficiency, which is essential for 
large-scale multi-parameter inversion. 
Forward modelling is performed with Devito (Louboutin et al. 2019) using a Standard Linear Solid 
(SLS) viscoacoustic formulation. Gradients for the wave equation are computed through the adjoint-
state method built in Devito, while derivatives with respect to the neural network are obtained by 
automatic differentiation. 
The network takes spatial coordinates as inputs and outputs the physical parameter of interest; the 
inversion therefore modifies only the network weights, while the model is sampled on demand at 
the grid nodes required by the numerical solver. 
The inversion proceeds in two stages. In the first stage, only Vp is updated, starting from a randomly 
initialized SIREN network, while Qp is kept fixed at a homogeneous value. After convergence (1000 
iterations with Adam optimizer, using a 0.001 learning rate), the recovered Vp is fixed and used to 
generate viscoacoustic simulations in the second stage, which inverts solely for Qp using an 
independently initialized SIREN. The use of random initialization for both networks demonstrates 
the ability of IFWI to shape a physically meaningful subsurface model without relying on informative 
starting points. 
After completion of the IFWI stages, the predicted Vp and Qp models are both refined using a short 
deterministic inversion phase. We perform 10 iterations on the grid-sampled models, exploiting the 
accurate gradients available on the numerical grid. This stage enhances the resolution of 
boundaries, sharpens the attenuation anomaly, and adjusts small-scale features that may be 
difficult for a low-depth SIREN network to represent. 
For comparison, a traditional deterministic viscoacoustic FWI is performed separately, initializing 
both Vp and Qp from smoothed versions of the true models. This provides an optimistic baseline 
for assessing the improvement introduced by the implicit formulation. 
 
 
Results 
 
The true Valhall synthetic model used in this study contains a strong low-velocity anomaly 
associated with the shallow gas cloud, extending laterally across the central region and producing 
significant amplitude dimming in the seismic data. The corresponding Qp anomaly is also spatially 
confined to the gas zone, exhibiting a high attenuation zone that dramatically affects wave 
propagation. The true models used in this study are illustrated in Figure 1 and serve as a benchmark 
for evaluating the inversion results. 
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Figure 1 True Vp and Qp models for the Valhall synthetic gas-cloud case. 

 

        

                                     

         

Figure 2 Initial and predicted Vp and Qp models for the Valhall synthetic experiment using the proposed inversion 
workflow. 

In the first inversion stage, the IFWI successfully reconstructs the overall geometry of the velocity 
depression, despite starting from a completely random model. The INR produces a smooth but 
geologically consistent representation, accurately capturing the lateral position and vertical extent 
of the gas cloud and showing a good agreement with the true Vp structure (see Figure 2).  
The second inversion stage focuses on attenuation, using the predicted velocity as input. The 
estimated Qp field aligns closely with the true attenuation anomaly (Figure 2). The continuity 
enforced implicitly by the SIREN network prevents the formation of spurious oscillatory artefacts 
typically encountered in grid-based multiparameter inversions. 
Following the IFWI stages, the 10 iterations of a standard deterministic inversion are used to 
sharpen the velocity boundaries and to improve the contrast of the attenuation anomaly, adding 
finer details to the final predictions of both Vp and Qp.  
If we compare these results with those obtained through a deterministic baseline inversion that 
starts from smoothed versions of the true models (Figure 3), we can observe that the predicted Vp 
model is affected by some artifacts and the low-velocity zone corresponding to the gas cloud is not 
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perfectly reproduced. For the attenuation, the predicted Qp models is not able to correctly identify 
the high-attenuation regions, producing diffuse attenuation zones in the central part of the model. 
Overall, the results obtained with the hybrid approach of IFWI combined with deterministic 
inversion closely resemble the target fields shown in Figure 1, confirming that the implicit neural 
approach is capable of capturing both kinematic and amplitude-related information, even when 
starting from completely random initial models.  

 

    

 

    

Figure 3 Initial and predicted Vp and Qp models for the Valhall synthetic experiment using a standard deterministic 
inversion. 

 

Conclusions 
 
This study demonstrates that implicit neural representations using SIREN networks provide an 
effective and robust framework for viscoacoustic FWI in complex geological settings such as the 
Valhall gas-cloud model. The continuous and resolution-independent representation reduces 
discretization artefacts, enhances inversion stability and the use of a sequential inversion workflow 
neglects possible artifacts associated with cross-talk effect between Vp and Qp. Remarkably, even 
when starting from random initial models, IFWI successfully recovers both the low-velocity zone and 
the localized high-attenuation anomaly characteristic of the shallow gas cloud. The subsequent 
deterministic refinement further enhances resolution, compensating for the limited depth of the 
neural architecture. When compared to a classical deterministic viscoacoustic FWI initialized from 
smoothed versions of the true models, our proposed approach demonstrates superior 
reconstruction quality, sharper boundaries and more stable Qp estimation. Thes results highlight 
the potential of implicit viscoacoustic FWI as a powerful and flexible methodology for multi-
parameter imaging in complex, strongly attenuative environments, and provide a promising 
direction for its application to field-scale datasets. 
Possible future developments include exploring deeper SIREN architectures capable of reproducing 
fine-scale details without the need for a subsequent deterministic refinement step or employing a 
single joint network to simultaneously invert both Vp and Qp. 
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Introduction 

Understanding how seismic velocity and intrinsic attenuation jointly influence waveforms is 
fundamental for reliable subsurface imaging, especially in environments affected by strong 
amplitude distortions and illumination loss. In viscoacoustic full waveform inversion (VFWI), 
variations in Vp and Qp often generate similar responses in the data, producing strong parameter 
coupling and significant cross-talk (Yong et al. 2024). In particular, Qp is notoriously difficult to invert 
because its imprint on seismic data can be partially indistinguishable from that of Vp, leading to 
parameter leakage, instability, and non-uniqueness.  
In order to investigate this behaviour in a controlled environment, we analyse a simple but 
representative viscoacoustic model and study the mutual influence between Vp and Qp. The 
background velocity increases linearly with depth and includes a high-velocity anomaly located on 
the left side of the model, while attenuation is described by a homogeneous background and a 
localized low-Qp anomaly situated on the right. This spatial separation allows us to observe how the 
sensitivity of the wavefield responds to each parameter independently, avoiding artificial 
correlation induced by overlapping anomalies. 
To better understand the undelying causes of parameter coupling, we complement the inversion 
with a controlled sensitivity analysis based on a simplified model parameterization, restricting the 
problem to only four scalar parameters—the background velocity, the velocity anomaly, the 
background attenuation and the attenuation anomaly. This enables explicit computation of the 
Jacobian, Hessian, covariance and correlation matrices. 

 
Results 

We consider a simple 2D model where the background Vp increases linearly with depth, and a high-
velocity anomaly is embedded in the left portion of the domain. For Qp, the background is 
homogeneous while a localized attenuation anomaly is placed on the right side of the model. This 
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configuration ensures that any interaction between the two physical parameters arises exclusively 
from wavefield physics rather than geometric overlap. 
The inversion workflow follows a two-stage process: in the first stage the Vp is updated while Qp is 
kept fixed at a homogeneous value. Once the recovered velocity stabilizes, it is fixed, and the second 
stage targets Qp alone. Both stages use the same numerical framework, based on forward and 
adjoint simulations performed with Devito under a Standard Linear Solid (SLS) attenuation model 
(Louboutin et al. 2019). This entire two-stage procedure is repeated for three times, allowing a 
better reconstruction of both the Vp and Qp anomalies. 
From the results shown in Figure 1, we can observe how the predicted velocity field accurately 
reproduces the velocity anomaly in the correct position while the Qp anomaly has no influence in 
the Vp prediction. For the Qp prediction instead, the inversion is able to accurately reproduce the 
Qp anomaly, but some artifacts arise in correspondence of the Vp anomaly. 

 

   

   

    

Figure 1.  True, initial and predicted Vp and Qp models. 

 

If we have a look to the gradient maps related to Vp and Qp (Figure 2), we can observe how the Vp 
anomaly is visible in the map associated to the Qp at the final iteration of the inversion, confirming 
the cross-talk between Vp and Qp that affects the FWI predictions. 
To better investigate the behavior observed in the sequential FWI, a complementary sensitivity 
analysis is carried out. The model is parameterized by four different variables: background Vp, Vp 
anomaly, background Qp and Qp anomaly. This reduced framework makes it possible to interpret 
the influence of each parameter independently. The Jacobian is then explicitly computed by 
introducing small perturbations to each parameter and evaluating the corresponding data misfit 
through viscoacoustic simulations. From the Jacobian, the Hessian, covariance and correlations 
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matrices are derived, providing a clear interpretation of parameter dependency and uncertainty 
distribution. 

 

      

   

Figure 2.  Gradient maps associated with Vp and Qp, respectively, extracted at the first and last iteration of the FWI 
workflow. The red arrow highlights the Vp anomaly effect visible in the gradient map associated with the Qp. 

 

      

 

 

   

 

Figure 3.  On top, the simplified four-parameter model used for sensitivity analysis; on the bottom, the correlation matrix 
and the variance values associated to each parameter. 

Anomaly Background Anomaly Background 
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This sensitivity analysis reveals strong asymmetry in the way Vp and Qp influence seismic data. The 
correlation matrix shown in Figure 3 clarifies the coupling between different model parameters. The 
attenuation anomaly exhibits significant correlations with both velocity components, indicating that 
attenuation estimates are easily contaminated by velocity mismatches. 
The covariance values reveal a striking difference between the resolvability of velocity and 
attenuation. The variances associated with background velocity and velocity anomaly are relatively 
small (of the order of 1e-7), confirming that velocity is well constrained by the data. In contrast, the 
variance associated with the attenuation background reaches approximately 1e-4 and the 
attenuation anomaly shows a variance close to 1, indicating much higher uncertainty. These values 
demonstrate that attenuation is fundamentally much more difficult to constrain. 

 

Conclusions 

This simplified four-parameter experiment provides a clear and quantitative demonstration of the 
inherent crosstalk between velocity and attenuation in viscoacoustic FWI. The sensitivity analysis 
provides an intuitive explanation for this behaviour, showing that velocity is strongly constrained 
while attenuation is characterized by much larger uncertainty and strong correlation with velocity 
variations. 
The asymmetric coupling revealed by the correlation and covariance analyses shows that 
attenuation cannot be reliably recovered without strong regularization, low-frequency information 
or additional prior constraints. These results help explain the instability and noise amplification 
commonly observed in practical Qp inversions and underline the need for careful parameterization 
and inversion strategies when simultaneously recovering Vp and Qp in viscoacoustic FWI. 
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The mul(-homogeneous theory applied to the 
imaging of poten(al fields data 
 

L. Bianco, M. Fedi 

Università degli Studi di Napoli "Federico II 
 

The fields generated by ideal sources are homogeneous func6ons by a constant integer degree, n, 
which is -3, -2, -1 and 0 respec6vely for spheres, dykes, sills, and contacts.  

However, when dealing with geological source distribu6ons and their fields, the homogeneity 
equa6on is not sa6sfied. Instead, they exhibit "mul6-homogeneity," it is to say that degree of 
homogeneity is not fixed but is dependent on the distance from the source. Consequently, n oHen 
assumes frac6onal values and varies locally with observa6on posi6ons.  

From this, we integrate mul6-homogeneity theory into the Depth from Extreme Points (DEXP) 
method (Fedi, 2007). This imaging technique was defined for the aforemen6oned class of ‘ideal 
sources’, the proposed integra6on expands the DEXP applica6on to complex sources, without the 
need of assuming the ideal sources as representa6ve of the real-world distribu6ons. 

 

 The proposed technique is tested on synthe6c and real cases. The mul6-homogeneous DEXP 
exhibits a significantly improved recovery of the source geometry, thus allowing also a conversion 
from DEXP image to physical parameter distribu6on. 
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Introduction 
 
The magnetotelluric (MT) method is a passive geophysical prospecting technique that measures the 
Earth’s response to the diffusion of natural occurring electromagnetic (EM) fields. To derive the 
subsurface resistivity data inversion techniques are commonly used, however these approaches are 
ill-posed problems as different resistivity distributions can generate equivalent surface responses. 

Previous works have proposed different approaches to tackle the non-linearity of the inverse 
problem for MT data. In particular, Calderon Hernandez et al. (2026) developed a method in which 
by defining a 1D cumulative resistance model of the subsurface a mapping function Ξ can be 
established between the 1D resistivity model and its corresponding MT data. This mapping 
relationship was used to train a neural network Ξ" that directly transforms MT data into a 1D 
resistivity model of the subsurface without requiring a-priori information nor iterative processes. 

In this work we explore the physical meaning of the mapping function Ξ, by analyzing its relationship 
with the attenuation of the electromagnetic field in a layered medium and by comparing it with the 
conventional skin-depth #. Furthermore, to evaluate the quality of the solutions provided by the 
mapping network Ξ" , we explore the solution space associated with the inversion of 1D synthetic MT 
data. This analysis allows us to determine the position of the network’s prediction within the 
inversion manifold, highlighting the mapping network Ξ"  robustness in addressing the non-
uniqueness of the 1D inversion for MT data. 

Method 

W simulated MT data, to be referred as "measured data", from a 1D resistivity model, to be referred 
as “true model” (Figure 1a), using the python routine empymod provided by Werthmüller (2017). 
We then computed a resistance model of the subsurface following the approach depicted by 
Calderon Hernandez et al. (2026) defining the resistance model $(&) as 

 !(#) = !
"($) (1) 

where ((&) is the longitudinal conductance. 



Session 3.3                    GNGTS 2026 

 

Using the real component of the wave impedance ℜ*+!"(,)- from the data, and the resistance 

model, we searched for all the (&, ,) pairs for which ℜ*+!"(,)- = $(&) 	(Figure 1b), retrieving the 
mapping function Ξ (Figure 1c). 
 
 

Figure 1: Proposed layered resistivity model (a). Data and model matching for a given data point (b). Frequency-depth 
pairs for all data points and the mapping function Ξ between data and model (c). 

We then computed the attenuation of the electromagnetic field (Figure 2) for the model in Figure 
1a following the approach proposed by Jones (2006) in which the amplitude of the electromagnetic 
field at each depth is defined as 

 &'((#) = '|*!($)|+,"($)+
|*!(-)|+,"(-)+

 (2) 

where |1!(&)| = 21!1!∗. 

Furthermore, to evaluate quality of the 1D resistivity models predicted by the mapping network Ξ"  
within the non-unique MT inverse problem solution space, we conducted a global exploration of the 
solution space using a random search approach. An ensemble of 1D resistivity models and their 
corresponding MT data were simulated. For each simulated MT data in the ensemble, we computed 
the data misfit between the simulated and measured data and compared this distribution with the 
misfit obtained from the mapping network Ξ". 

Results  

Physical Meaning of the Mapping Function Ξ 

To show the physical meaning of the mapping function Ξ we plotted it on the electromagnetic 
attenuation field shown in Figure 2 (white) and compared it with the conventional skin depth for 
MT data (red), defined as 

 ( = '.	0#$$
1%	2

.	 (3) 

Where 3$%%  denotes the apparent resistivity. In addition, we compared the mapping function Ξ with 
the true skin depth (blue), defined as the point in which 4!"(,) = 1/7 for each point in depth. 
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Figure 2: Attenuation field for the layered resistivity model depicted in Figure 1a. Theoretical skin depth computed by 
using eq. (3) in red. Real skin depth in blue. Mapping function Ξ in white. 

The results demonstrate that the mapping function Ξ follows closely the real skin depth, and that 
its behavior can be directly associated to the resistivity properties of the model in Figure 1a. In 
particular, the mapping function Ξ captures a dynamic sensitivity of MT data that depends on the 
resistivity structure of the subsurface, this can be attributed to the fact that Ξ represents a 
resistivity-dependent, dynamic investigation depth which cannot be depicted by the conventional 
skin-depth. 

Validity of the Mapping Network  Ξ"  Results in the Solution Space 

To assess quality of the results from the mapping network Ξ"  within the global solution space, we 
randomly generated 5000 different 1D resistivity models. And for each model, we simulated its 
corresponding MT data using the forward model empymod and we evaluated the data fitting using 
the normalized root-mean Square (nRMS) error of the complex impedance +, defined as 

 )!*+ = ' !
3∑

|4&'()(5*)6	4)*&(5*)|+
|4&'()(5*)|+

3
78! .	 (4) 

where 8 is the number of data points, and +&'() and +)*& denote the measured and simulated 
complex impedances, respectively. The distribution of misfits obtained from the ensemble of 
simulated models was then compared with the misfit associated to the resistivity model predicted 
by the mapping network Ξ"  (red cross) in Figure 3. All compared relative to the misfit of the true 
resistivity model (blue diamond). 
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Figure 3: Misfit associated to the solution space for 5000 1D resistivity models. The x-asis represent mean log10-
resistivity of all the layers within one model, the y-axis the log10-structure index (total arc length of the resistivity 
profile), and the z-axis the nRMSE between simulated and measured data (eq. 4). The red cross depicts the results of 
the mapping network  Ξ9 and the blue diamond depicts the true resistivity model. 

The validity of the prediction from the mapping network Ξ" , is confirmed by its projection into the 
solution space. This result has the lowest misfit between simulated and measured data, and the 
properties of the predicted resistivity model are in agreement with those of the true resistivity 
model showing the robustness of the mapping network Ξ" . 

Conclusions 

We investigated the physical meaning of the mapping function Ξ by analyzing its relationship with 
electromagnetic field attenuation in a 1D layered Earth. By comparing the mapping function Ξ with 
both the conventional skin depth and the true skin depth for MT data we demonstrated that the 
mapping function Ξ closely follows the real skin depth and offers a sound data-driven representation 
of the real depth of investigation of 1D MT measurements. 

Furthermore, the robustness of the mapping network Ξ",  was validated through a global solution 
space analysis based on a random ensemble of 1D resistivity models. The resistivity model predicted 
by Ξ" , is projected into the region of lowest misfit within the solution space, and its properties are in 
agreement with the true resistivity model. This result demonstrates that the proposed mapping 
network Ξ" ,  not only mitigates the non-uniqueness inherent to 1D MT inversion but also reliably 
retrieves physically meaningful models, confirming the effectiveness of the approach developed by 
Calderon Hernandez et al. (2026). 
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Abstract 
In Signora et al. (2025), we demonstrated that the joint 1D electromagnetic (EM) and 2D DCIP (Direct 
Current resistivity and Induced Polarization) inversion achieves a significant improvement in 
resolution, as validated by logging data, still honouring both datasets. However, the joint inversion 
presents much more structure than the independent inversion. Are we certain that this structure is 
fully compatible with 3D modeling? Would it be possible to carry out a joint inversion of EM and 
DCIP data also in the presence of strong polarization effects? To answer these challenges, we 
developed a 3D-EM and 2D DCIP joint inversion scheme capable of modeling IP in both EM and DCIP 
data with the same polarization model, i.e. the maximum phase angle (MPA) reparameterization of 
the Cole-Cole model. The key feature of this joint 3D EM/2D DCIP inversion scheme is the decoupling 
of inversion and forward meshes, together with the possibility to tailor the 3D EM forward meshes 
to the modelled EM systems, with mesh refinements dependent on the size of the EM system 
footprint and penetration depth and modelling to the Tx shape. We implemented this new 
development on two distinct datasets: one for hydrogeological characterization and the other for 
mineral exploration. 

I Introduction 

Geophysical electromagnetic (EM) and electrical methods play significant roles in hydrogeological 
exploration and mineral resource investigations. EM methods can efficiently conduct large-scale 
resistivity surveys, such as airborne electromagnetic (AEM) methods. When considering the induced 
polarization (IP) effect, the EM methods can also delineate the distribution of shallow subsurface 
chargeable anomalies. Electrical methods, such as direct current (DC) resistivity and time domain 
induced polarization (TDIP) techniques, employ surface electrode arrays to obtain subsurface 
resistivity and polarization information. Although electrical methods exhibit lower survey efficiency 
compared to EM techniques, they offer good exploration resolution, making them well-suited for 
localized geological investigations. However, both electrical and EM methods suffer from non-
uniqueness in data inversion, meaning multiple distinct subsurface models can fit the measured 
data. To mitigate the non-uniqueness issue in inversion, researchers began exploring the use of data 
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collected from multiple geophysical methods to derive a robust model capable of simultaneously 
fitting diverse datasets. This approach is known as joint inversion. 

Joint inversion fundamentally differs from traditional integrated interpretation. Integrated 
interpretation merely combines the inversion results of independent methods without leveraging 
the synergistic potential of cross-method observational data, leaving its quality dependent on the 
interpreter's expertise. In contrast, joint inversion capitalizes on shared physical parameters (e.g., 
resistivity) across different geophysical methods to simultaneously process diverse datasets, 
thereby achieving superior inversion resolution compared to individual methods. For electrical and 
EM methods, EM techniques generate currents through induction, primarily sensing horizontal 
resistivity variation characteristics, while the electrical method measures the vertical-horizontal 
geometric mean resistivity by injecting currents directly into the ground. Their complementary 
sensitivities to conductors (EM) and resistances (DC), combined with shared resistivity parameters 
(both can be extended to model IP effects), make joint inversion particularly valuable.  

Most of the existing studies on joint inversion of electrical and EM methods focus on resistivity 
parameters, and the modeling physical kernel is mostly based on a 1D layered earth approximation. 
In Signora et al. (2025), we show that joint 1D EM and 2D DCIP achieves a significant increase in 
resolution, still honouring both datasets. Since the research cases demonstrated by Signora et al. 
(2025) involve a weak-to-mild polarization for hydrogeological purposes, it is essential to explore 
whether the joint inversion remains applicable under conditions of strong polarization in geological 
settings. For these reasons, in this study we present a 2D joint inversion framework combining 
three-dimensional (3D) EM and 2D DCIP forward physical kernel to simultaneously recover 
resistivity and IP parameters based on the EEMverter platform (Fiandaca et al., 2024).  

II Method and Theory 

In our 3D EM numerical simulation approach, we have adopted a primary-secondary field separation 
technique. Unlike the traditional total field computation strategy, this method does not require 
dense meshing near the source and has a smaller footprint area, conducive to the substantial 
conservation of computational resources. Applying Dirichlet boundary conditions, the frequency 
domain electromagnetic curl-curl equation is (Chen et al., 2025): 

∫Ω(∇ × 𝐍 ∙ ∇ × 𝐄𝑠 − 𝑖𝜔𝜇(𝜎𝑠 + 𝜎𝑝)𝐍 ∙ 𝐄𝑠)𝑑V = ∫Ω(𝑖𝜔𝜇𝜎𝑠𝐍 ∙ 𝐄𝑝)𝑑V ,
𝑬𝑠|Ω = 0.

 
(1) 

The 2D galvanic DC and full-decay IP modelling are also calculated in the frequency domain, 
neglecting electromagnetic induction. For a point source with (zero-phase) current 𝐼, this problem 
can be defined by Poisson’s equation and solved through Fourier transformation in the strike (y) 
direction: 

𝜕
𝜕𝑥

(𝜎∗ 𝜕𝜙∗

𝜕𝑥
) +

𝜕
𝜕𝑧

(𝜎∗ 𝜕𝜙∗

𝜕𝑧
) − 𝜆2𝜙∗𝜎∗ = −𝐼𝛿(𝑥)𝛿(𝑧) (2) 



Session 3.3                    GNGTS 2026 

where 𝜙∗  and 𝜎∗  are the Fourier-transformed complex potential and the complex conductivity 
respectively, 𝜆 is the Fourier transformation variable and 𝛿 represents the Dirac delta function. The 
differential equation is solved by using the finite element method, applying the Neumann- and 
Dirichlet-type boundary conditions. For further details regarding the 2D DCIP modeling, 
see Fiandaca et al. (2013). The forward computations for both electrical and EM methods are 
performed in the frequency domain, and the time domain solution is obtained by a fast Hankel 
transformation. 

III Results 

As shown in Figure 1, the study area is in the Ossa-Morena Zone of southern Portugal. The AEM data 
from this region exhibits sign reversal phenomena caused by strong IP effects (Fig. 1c). On the 
ground, two follow-up DCIP lines were carried out in the Odivelas area, with the ABEM Terrameter 
LS 2 system in full-waveform acquisition. 

 

Fig. 1. DCIP and AEM survey line distribution and acquisition data. (a) Map of the Beja survey line; (b) Reference geology; 
(c) Example of AEM data with IP effects. 
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Fig. 2. Comparison of independent inversion results for the Beja survey lines. (a) 2D DCIP independent inversion for Line 
A; (b) 2D DCIP independent inversion for Line B; (c) AEM independent inversion for Line A (1D EM kernel); (d) AEM 
independent inversion for Line B (1D EM kernel). From top to bottom: the resistivity, the chargeability phase, the phase 
relaxation time and the frequency exponent. 

Figure 2 presents the results of independent inversion based on the MPA parameterization model. 
It is evident that both DCIP and AEM exhibit significant correlations in the IP parameters inversion 
results along two adjacent survey lines. The DCIP resistivity results, with a DOI of approximately 200 
meters, reveal a distribution pattern in the shallow subsurface characterized by an initial low-
resistivity layer followed by a high-resistivity zone, corresponding to the soil layer and gabbro layer, 
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respectively. The DCIP chargeability phase indicates a strong polarization anomaly in the region from 
50 to 150 meters below the surface, predominantly concentrated on the eastern side of the survey 
line.  The AEM resistivity results (Figs. 2c & 2d), with a higher DOI of about 450 meters, demonstrate 
that the high-resistivity layer extends both towards the shallow surface and deeper sections on the 
eastern side of the survey line, forming a low-resistivity zone in the middle, which is hypothesized 
to be associated with an oxide accumulation layer. The resolution of the AEM chargeability phase is 
inferior to that of DCIP, only showing a strongly polarized parameter layer in the shallow subsurface, 
with the thickness and intensity of the polarized layer decreasing from the western to the eastern 
side.  

 

Fig. 3. Comparison of 2D joint E&EM inversion results for the Beja survey lines. (a) Joint inversion results for Line A; (b) 
Joint inversion results for Line B. From top to bottom: the resistivity, the chargeability phase, the phase relaxation time 
and the frequency exponent. 

Figure 3 shows the 2D joint inversion results of the two survey lines. Within the DOI range, the joint 
inversion demonstrates superior spatial resolution, with more detailed delineation of resistivity and 
IP parameters in the shallow subsurface intrusive rock layer. Additionally, the chargeability phase 
from the joint inversion reveals that the subsurface strongly polarized zone gradually extends 
deeper from survey Line-A to survey Line-B. In terms of phase relaxation time, the joint inversion 
reveals that the effective DOI is primarily concentrated from the central to the eastern part of the 
survey lines. It consistently highlights the characteristic of coarse-grained mineralized zones being 
semi-enclosed by fine-grained media, which may be related to intrusive rock layers. Regarding the 
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frequency exponent, Survey Line A exhibits more localized band-like strong variations, suggesting 
the presence of multiple types of mineralized zones. 

IV Conclusions 

In this work, we presented a novel inversion scheme for the joint inversion of electrical and 
electromagnetic (E&EM) datasets with modelling of induced polarization and 3D EM kernel. The 
results from the mineral exploration case study indicate that the joint inversion of E&EM data is also 
applicable under geological conditions characterized by strong polarization parameters. More 
importantly, compared with independent inversion models, the E&EM joint inversion model is not 
merely a hybrid of individual results but rather a solution that significantly enhances subsurface 
resolution. This improvement stems from the complementary spatial sensitivities of DCIP and EM 
methods. 
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The accurate quantification of subsurface volumetric water content (VWC) remains a central 
challenge in hydrogeophysics, carrying direct implications for fields as diverse as precision 
agriculture, water resource management, and the forecasting of natural hazards such as flash floods 
and landslides. Cosmic Ray Neutron Sensing (CRNS) offers a non-invasive, field-scale approach that 
effectively bridges the significant resolution gap between highly localized point sensors and coarse-
scale remote sensing. By monitoring the above-ground flux of low-energy cosmic ray neutrons, a 
signal inversely correlated with the total environmental hydrogen pool, CRNS integrates VWC over 
a representative elementary volume typically spanning tens of hectares. However, despite its 
operational elegance, the rigorous processing and reliable interpretation of the CRNS signal, 
particularly in complex, heterogeneous landscapes, necessitate methodological refinement. The 
fundamental ambiguity in interpretation arises from the complex spatial variability of soil moisture 
and lithology within the sensor’s footprint, combined with the inherently nonlinear relationship 
between neutron count rate and VWC. This nonlinearity is known to result in a disproportionately 
stronger influence from drier soil regions, but the extent and modulation of this effect under 
realistic, spatially complex heterogeneity demand quantitative investigation. 

This work presents a comprehensive, purely synthetic study designed to rigorously investigate the 
response of the CRNS detector system across a range of heterogeneous subsurface configurations. 
The overarching objective is to significantly advance the CRNS data processing and interpretation 
workflow by demonstrating the critical value of explicitly incorporating prior information derived 
from complementary geophysical characterization. Synthetic datasets were generated using the 
URANOS (Ultra Rapid Neutron-Only Simulation) Monte Carlo neutron transport code, which 
accurately simulates the complex neutron pathways through the atmosphere and the spatially 
variable subsurface. The methodology adopted an integrated approach, utilizing prior geophysical 
characterization, specifically Electrical Resistivity Tomography (ERT) and Electromagnetic Induction 
(EMI) inversion results, from the well-studied Borgo Grignanello (SI) field site in Italy. This 
characterization informed the creation of a realistic ground model featuring two main lithological 
units with distinct porosity and VWC ranges (Fig 1 bottom). The simulation suite (Fig. 1) included 
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two reference homogeneous cases, an idealized symmetric two-region domain, and both the 
realistic and an inverted spatial configuration of the geophysical model of the site, enabling the 
isolation and quantification of the influence of the CRNS detector's non-uniform spatial weighting 
function. 

 

Neutron count rates obtained from URANOS were then converted into VWC time series using the 
open-source CoRNy software and the state-of-the-art Universal Transport Solution (UTS) forward 
model, ensuring a robust and physically consistent conversion across all simulated scenarios. The 
analysis of the resulting CRNS signals yielded crucial quantitative insights, confirming the 
hypothesis: for the heterogeneous configuration explicitly mimicking the complex conditions at 
Borgo Grignanello, the converted VWC derived from the CRNS signal was found to align remarkably 
(with a deviation of 1% ) closely with the VWC value of the drier soil portion within the domain. This 

Figure 1 Top Left: Example of homogeneous ground model as a png file image used in URANOS.  Top Right: Representation of the idealized 
symmetric model. Bottom Left: Simplified map of the site heterogeneity of Borgo Grignanello. Bottom Right: Geophysical 
characterization setup and EMI map of the Borgo Grignanello site 
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result provides strong, site-specific synthetic confirmation of the predicted dry-region dominance 
effect. However, the study demonstrated that this relationship is not a universal constant but is 
critically modulated by the degree of non-homogeneity in VWC values,  and the geometrical 
distribution of the heterogeneity: the precise position of the CRNS detector relative to the wet/dry 
interfaces, highlighting the complex, non-linear role of the detector’s spatial weighting function. 

The most critical outcome of this investigation lies in its methodological and practical utility for the 
hydrogeophysics community. The results unequivocally underscore and highlight the critical 
necessity of obtaining and integrating independent prior knowledge of subsurface heterogeneity 
for any robust and data-driven interpretation of CRNS time series. Since a simplistic interpretation 
of the CRNS signal as an unweighted spatial average can lead to significant errors, the fundamental 
utility of this research is the demonstration that the integration of CRNS with complementary 
geophysical methods, such as ERT and EMI for lithological and moisture-proxy mapping, is a 
necessary prerequisite for achieving a more conscious and reliable interpretation of the CRNS 
dataset. This multidisciplinary workflow enables the construction of a structurally and spatially 
informed conceptual model that, when incorporated into the CRNS data processing via tools like 
URANOS, moves the interpretation beyond a single, ambiguous VWC value toward a more nuanced 
and accurate assessment of the state of the heterogeneous soil moisture field. This integrated 
approach offers an immediate pathway toward reducing uncertainty in field-scale soil moisture 
assessments, supporting more efficient resource management, and enhancing the reliability of 
environmental monitoring in complex natural settings. 
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EEMstudio & EEMverter LITE 

EEMstudio & EEMverter LITE are a Graphical User Interface (GUI) and Modelling Kernel for 
processing and modelling of Electrical (E) and Electromagnetic (EM) data distributed starting from 
November 2025 with Opensource (EEMstudio) and Freeware (EEMverter) licenses by the EEM Team 
Spin-Off company (www.the-eem-team.it), a spin-off of the University of Milano. 

EEMverter (Fiandaca et al., 2024) has born with the intention of handling natively joint inversion of 
different data types (e.g. Chen et al., 2026 and Fiandaca et al., 2025 for 2D galvanic and 3D EM joint 
inversion; Signora et al., 2025b for 2D galvanic and 1D EM joint inversion), time-lapse inversion (e.g. 
Signora et al., 2025 for Airborne EM data; Ciraula et al., 2025 for galvanic data), induced polarization 
and all dimensionalities (1D,2D & 3D) in the forward response (e.g. Chen at al., 2025 for 3D Airborne 
EM modelling with IP (AIP); Dauti et al. 2026 and Dauti et al. 2025 for 1D AIP modelling; Ciraula et 
al. 2025 and Römhild et al., 2024 for galvanic full-decay IP modelling). 

EEMverter key features are: 

• Definition of distinct meshes for model parameter definition, forward computation and 
constraint definition (Madsen et al., 2020; Zhang et al., 2022) in vtk format, for being easily 
visualizable in Paraview (Ahrens et al., 2005). 

• Parametric definition of electrical properties, such that the (complex) electrical conductivity 
is computed through functions, also integrating petrophysical relations (e.g. Römhild et al., 
2024 for direct inversion of DCIP data in terms of hydraulic conductivity). 

• Flexible definition of the inversion objective function, such as the data misfit, roughness 
misfit & prior misfit can be computed with the use of different norms, such as L1, L2, 
generalized Minimum (Gradient) Support (Fiandaca et al., 2015). 

• Iterative inversion splitable in several inversion cycles, where inversion model and 
parameters, data and constraints are selected for producing comprehensive results. 

http://www.the-eem-team.it/
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EEMstudio (Sullivan et al., 2024) is a versatile QGIS plugin designed for processing, modelling, and 
inverting electrical and electromagnetic data. 

EEMstudio key Features are: 

• QGIS integration for intuitive geospatial analysis 
• Specialized processing tools for electric and electromagnetic data in time domain 
• Advanced modelling and inversion, powered by the EEMverter kernel 
• Comprehensive visualization tools for geophysical data and results 
• Open-source flexibility allowing community contributions and custom enhancements 

Supported data types and formats 

EEMstudio and EEMverter handle galvanic data with induced polarization, both in full-decay and 
integral chargeability, and TEM inductive data, with single soundings and ground-based acquisitions 
in continuous mode. EEMstudio features a built-in file converter, making it easy to convert data to 
the file format used in EEMstudio and EEMverter. The converters available in the LITE version are: 

• Galvanic data – ABEM Terrameter .txt format (file exported directly from the Terrameter LS 
Toolbox); IRIS .bin format (native binary file format exported from the IRIS instruments); 
Res2DInv .dat format (resistivity-only and integral chargeability both supported with 
standard format); Generic .tx2 format (output of the full waveform processing tools 
developed at Aarhus/Lund University, Olsson et al., 2016);  

• Inductive data – Loupe .dat format (Native export format from the Loupe instrument); tTEM 
.xyz/.lin format (file exported with TEM Data Manager software distributed by 
TEMcompany); TEM2Go .xyz/.lin format (file exported with TEM Data Manager software 
distributed by TEMcompany); sTEM .usf format (file exported with TEM Data Manager 
software distributed by TEMcompany); single sounding .usf format. with stacked data (e.g. 
SPIA export) and with raw data with multiple sweeps (e.g. WalkTEM export). 

In the official release, both galvanic and inductive demo files are distributed, to allow the users easily 
accessible training datasets. 

Available modelling of E & EM data in LITE versions 

EEMstudio and EEMverter LITE allows several options for modelling of Direct Current (DC) and time-
domain IP galvanic data and transient EM (TEM) data, both for single datasets and in time-lapse 
inversion. 

Available galvanic modelling: 

• Full-decay IP modelling, taking into account the current waveform and the system transfer 
function following Fiandaca et al. (2013), for 50% and 100% duty cycles (Olsson et al., 2025); 
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• Integral chargeability modelling, always considering the current waveform and the system 
transfer function for quantitative interpretation (Olsson et al., 2019). 

Similarly to Fiandaca et al. (2013), the galvanic forward/jacobian computations are carried out in 
frequency domain, solving Poisson’s equation in 2D with the finite element method, and time-
transformed in time domain through the Hankel transform. Constant Phase Angle and Cole-Cole 
modelling are allowed for IP data, also with Maximum Phase Angle (MPA) re-parameterization 
(Fiandaca et al., 2018). 

On the contrary, EM modelling in the LITE EEMverter version is carried out in 1D, following Effersø 
et al. (1999) and Sullivan et al. (2023), and modelling the current waveform with the Fitterman and 
Anderson (1987) approach. The available modelling for inductive data in EEMstudio/EEMverter LITE 
are: 

• Single sounding TEM data, in both X and Z components and support for multiple moments 
and modelling of the transmitter shape; 

• Ground-based multi-sounding TEM data in continuous acquisition, with both 2D and 3D  
inversion meshes with horizontal constraints. 

No IP modelling nor airborne modelling Are supported in the LITE versions for inductive data, as well 
3D computations. 

Figure 1 presents and example of full-decay MPA inversion of galvanic data, while Figure 2 presents 
the inversion of tTEM inductive data along the same line. 

 

Fig. 1 – Direct current and full-decay Induced Polarization (DCIP) spectral inversion of galvanic data (Bubbiano demo file 
inverted with EEMverter and distributed with the EEMstudio/EEMverter LITE bundle) in terms of Maximum Phase Angle 
(MPA) Cole-Cole re-parameterization. Plots extracted from the Visualization App of EEMstudio. Plot 1: pseudosection 
of data. Plot 2: resistivity inversion section. Plot 3: chargeability (maximum phase) inversion section. Plot A: example of 
IP data fit (blue markers – data; black lines – forward). Depth of investigation in the inversion sections is shown with 
shading. 
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Fig. 2 – Inversion of tTEM inductive data of the  Bubbiano demo file. Plots extracted from the Visualization App of 
EEMstudio. Plot 1: Low Moment data stripe (blue markers – data; black lines – forward). Plot 2: high Moment data stripe 
(blue markers – data; black lines – forward). Plot 3: resistivity inversion section. Plot 3: data misfit along the profile. Plot 
A: example of TEM soundings and fit (blue markers – data; black lines – forward). Depth of investigation in the inversion 
sections is shown with shading. 
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Workflows 

Fig. 3 presents the workflow in EEMstudio/EEMverter for processing and inversion of data (Inversion 
Scheme) and modelling of synthetic data (Forward Scheme). 

 

Fig. 3 – EEMstudio/EEMverter inversion and forward schemes. Inversion scheme: 1) data load or conversions; 2) 
processing of E & EM data, for culling outliers out in the QGIS environment, through the Processing App; 3) data 
inversion with Modelling App; 4) visualization of inversion results and data fit; 5) delivery or post-processing for 
improving the processing with the help of the inversion results. Forward scheme: 1) selection of data; 2) forward 
modelling through Modelling App; 3) visualization of modelling results through Visualization App; 4) inversion of 
synthetic data.  
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Conclusions 

We presented EEMstudio and EEMverter LITE, a novel processing and modelling environment for 
electrical and electromagnetic data with focus on induced polarization distributed with Opensource 
(EEMstudio) and Freeware (EEMverter) licenses. The LITE version of the software allows to process 
and model: 1) DC and integral chargeability/full-decay IP data in 2D; 2) TEM data in stationary and 
continuous acquisition modes, such as tTEM, Tem2Go, sTEM and Loupe; 3) time-lapse data, both 
galvanic and inductive. We believe that EEMstudio and EEMverter LITE, with their common 
processing and modelling environment for galvanic and inductive data integrated in QGIS, will 
advance the usability of Electrical and Environmental methods for both researchers and 
practitioners. 
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Introduction 
One of the most powerful tools in seismic methods for subsurface imaging is represented by Full 
Waveform Inversion (FWI; Virieux and Operto, 2009). It consists of an optimization problem in which 
the difference between observed and modelled seismogram is iteratively minimized to estimate the 
velocity distribution of the investigated subsurface. The idea behind FWI is to employ the entire 
information content of the seismic data, considering both amplitude and phase. This leads to 
potential for high-resolution imaging, but it comes with its own challenges and limitations, due to 
the strong non-linearity and the ill-posedness of this inverse problem. Main issues when applying 
FWI are represented by the cycle-skipping and the reliance on the starting model. Indeed, a good 
initial model is crucial for the success of the approach, avoiding the optimization to get stuck in local 
minima of the objective function. Common strategies to cope with these challenges include the use 
of alternative misfit functions, enhancement of low frequencies in the data, the use of global 
optimization approaches or casting the inversion in a probabilistic framework to better explore the 
solution space.  

In this work we use a machine learning approach, the Implicit Neural Representation (INR), to solve 
the FWI. We build a continuous representation of the velocity model, instead of a standard grid-
based one, through the parameters of a simple Multi Layer Perceptron (MLP) and we optimize for 
them. Sun et al. (2023) demonstrated the effectiveness of this approach in seismic FWI and that it 
reduces the dependency on the initial model, being able to converge even when starting from a 
random initialization. Therefore, implicit representations can be regarded as an alternative 
reparameterization, able to preserve fine details and to reduce the computational complexity of a 
grid-based inversion. Its effectiveness partially depends on the frequency bias property of deep-
learning optimization, namely the ability to learn and update from low to high frequency 
components. 

We present here an application of INR FWI to field data from the CROP project, a large-scale Italian 
deep-crustal exploration program, deployed in the ‘80s and ‘90s. In particular, we consider a data 
extracted from the CROP-18A 2D seismic line dataset, acquired in southern Tuscany across the 
Larderello geothermal area to investigate the relationship between deep crustal structures and 
geothermal activity (Bertelli et al., 2003; Scrocca et al., 2003). Previous studies on the same seismic 
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line (de Franco et al., 2019; Tognarelli et al., 2020) can provide useful information to validate our 
results. 

Methods 
Unlike purely data-driven models, which often struggles to generalize beyond their training set, FWI 
is governed by physical equations describing wave propagation, ensuring predictive consistency and 
interpretability. This connection suggests that combining deep learning with the underlying physics 
of FWI can lead to more robust and generalizable inversion framework (Sun et al., 2023). Most of 
the deep-learning approaches to FWI inherit its traditional challenges, especially the strong reliance 
on initial model.  

In the context of shape representation, coordinate-based Deep Neural Network are able to learn 
continuous functions (Sitzmann et al., 2020). Once trained, such networks can act as implicit 
representations of objects or scenes, enabling high-quality image or 3D surface reconstruction from 
the input coordinates. As explained in Sun et al. (2023), Deep Neural Representation models a 
continuous function that maps input coordinates to features of interest. After training, the network 
approximates the continuous function yielding a smooth and memory efficient representation. 
Compared to grid-based discretization, the INR stores information in a continuous form, preserving 
fine details without dependence on spatial resolution. 

When applied to seismic inversion, INR can represent subsurface physical parameters !(#) within 
the constraints imposed by the wave equation. This leads to INR FWI, where the forward model ℱ 
satisfies 

&ℱ(!, (, #, )) − + = 0 

with & denoting the matrix of receiver layouts, ( the source, # the spatial coordinates, ) the time 
and + the observed data. Replacing the model parameters ! with the neural network .!(#), we 
obtain the formulation for the optimization problem of INR FWI: 

argmin
!

‖&ℱ(.!(#), (, #, )) − +‖" 

with the network implicitly representing the velocity model. 

We implement INR by considering a MLP, i.e. a network made of sequential layers of interconnected 
neurons, each performing a weighted sum of its inputs, followed by a nonlinear activation function. 
The output 6#(%) of the neuron 7 in layer 8 is computed as: 

6#(%) = 9:;#(%)6#(%'() + =#(%)> 

where ;#(%) and =#(%) are the weight and the bias associated to the considered neuron and 9  
represents the activation function. 

To effectively capture high-frequency and spatially complex variations in the subsurface velocities, 
we adopt a sinusoidal representation network (SIREN), proposed by Sitzmann et al. (2020). This type 
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of INR employs periodic activation functions and, compared to other types of activations, can 
represent fine details and high-order derivatives more accurately. Thus, the output of a neuron 
becomes	

6#(%) = sin:A);#(%)6#(%'() + =#(%)> 

with A)	representing a tunable parameter which affects the frequency that the network is able to 
capture. 

To start the inversion from a given initial model, we need to train the network to represent it. Given 
a grid of spatial coordinates as input and the corresponding values of the velocity field as output, 
the training adapts the network parameters by minimizing the difference between ground truth and 
predicted velocities. We do not train the network, but we randomly initialize the weights, following 
what suggested in Sitzmann et al. (2020) and Sun et al. (2023). To do so, we randomly draw weights 
so that  

;#(%)~CD−E6/H,E6/HI 

with C representing a uniform distribution and H the number of input features fed into the layer. 
This ensures that the input of each sinusoidal activation function is normally distributed with unitary 
standard deviation (Sitzmann et al. (2020)). 

Results 
The dataset considered in this work consists of 10 shots (explosive source) recorded by 192 
geophones, deployed in an asymmetric split spread configuration, characterized by a maximum 
offset ranging between 6 km and 7.7 km. We considered the first 3 s of the recorded signal, with a 
sampling interval of 4 ms. 

To compute the forward modelling, we discretize the domain in a grid with nz=42 nodes on the 
vertical and nx=1565 on the horizontal direction, respectively. The grid spacing is 30 m in both 
directions, thus the considered domain is about 1.2 km deep and extends horizontally for about 47 
km. In our modelling, we did not include topography, thus we considered a datum at 200 m above 
sea level to refer the data, and we applied the static corrections for sources and receivers available 
in the dataset. The source signature has been estimated by selecting short offset traces, flattening 
the first arrival and stacking them to obtain a mean wavelet. The forward modelling code is 
Deepwave (Richardson, 2022), which employs finite-difference method to numerically solve the 
wave equation and automatic differentiation to compute gradients. 

To prepare the data for the application of FWI and to enhance refracted and diving waves, on which 
we focus in our study, we applied a simple pre-processing consisting in a low-pass filter up to 10 Hz, 
top and bottom muting to select only the portion of seismogram of our interest and a trace-by-trace 
normalization. Fig.1(a) and Fig.1(b) show one of the considered shot gathers before and after the 
pre-processing, respectively. Instead, Fig.1(c) shows the position along the line of sources and 
receivers for the 10 shots considered, with the extension of the inverted model. 
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To implement the INR FWI, we consider a MLP with two hidden layers of 32 neurons each, for a total 
number of 2241 network parameters and sinusoidal activation functions. Note that these are the 
unknowns of the inversion and by representing the model through the MLP, the number of 
parameters is substantially reduced with respect to a standard grid-based inversion, which would 
involve nx∙nz=65730 unknowns for the same spatial discretization used in the forward modelling. 
The frequency A) for the SIREN is set to 10. For the optimization, we run the FWI for 6000 iterations, 
using the Adam optimizer. The selection of architecture and tunable hyperparameters comes from 
experience made on synthetic tests and trial and error procedure to understand the configuration 
that works better in our field data application. The inversion procedure took about 6 hours on a 
server equipped with IntelÒ XeonÒ Silver 4114 CPU @2.20 GHz. This time is considerably reduced 
when using GPUs.  

 

Fig. 1 – One shot gather before (a) and after (b) the pre-processing steps. (c) Positions along the horizontal axis of the 
sources (in red) and the receivers (in green) for the different shots, with the extension of the inverted model, expressed 
both in meters and in grid points. 

To test the robustness of the INR FWI against initialization, we decided to run the inversion starting 
from a random model, obtained with a random initialization of the network weights and biases as 
previously discussed. The random initial model is represented in Fig.2(a), whilst Fig.2(b) shows the 
model predicted after the inversion. Focusing on the most illuminated portion, thus excluding the 
less reliable lateral and bottom edges of the domain, we note the left portion of the model shows 
high velocities at shallow depth or at surface, whilst the right side is characterized by lower 
velocities, pertaining to a sedimentary basin. This prediction is consistent with the results shown in 
Tognarelli et al. (2020). As stated in that study, the alternation of higher and lower velocities at 
surface level corresponds to the sequence of the outcropping hard and soft formations. Velocities 
of 5-6 km/s can be associated to metamorphic formations, whilst the increment up to about 7 km/s 
could be due to the presence of intrusive bodies (Tognarelli et al., 2020). 

To better understand the reliability of the result obtained with INR FWI, we check the data fitting. 
Fig.3(a) shows the comparison of the observed data (black) and the initial data (red). The observed 
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data is then compared for the same shot gather to the data computed on the predicted model 
(Fig.3(b)). We note an improvement in the fitting of the first events, with the INR FWI that was able 
to partially solve the highly cycle-skipped initial data. This is supported by the close-ups on some 
traces shown in Fig.3(c). The phase of the first three or four observed cycles is well reproduced in 
the prediction, with some mismatch in the amplitudes, even when the initial data was completely 
missing those events. 

 

Fig. 2 – The random starting model (a) and the model predicted by INR FWI (b). 

 

Fig. 3 – Comparison of observed (black) and data computed (red) on the starting model (a) and on the final FWI predicted 
model (b). Close-ups of some traces (c). 

Conclusions 
In this study we tested the INR FWI proposed in Sitzmann et al. (2020) and Sun et al. (2023) on field 
data from a geothermal area. The predicted model is consistent with the results reported in 
Tognarelli et al. (2020) on the same CROP-18A seismic line. 

The INR FWI offers a promising alternative to standard FWI implementations. The model 
representation through the network parameters and the frequency bias property lead to inherent 
regularization of the solution and to alleviate the necessity of an informative and accurate initial 
model. Indeed, the method, as shown in this study, is able to converge to reliable and meaningful 
solutions even when starting from a random initial guess. 

Further improvements could come from extending the analysed dataset by including more shots in 
the inversion and taking into account the topography in the modelling. 
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Introduction 

Electrical resistivity tomography (ERT) is a widely applied geophysical imaging technique for 
resolving subsurface resistivity variations, with applications ranging from hydrogeology and 
environmental studies to engineering and geohazard assessment. Conventional ERT inversion 
strategies are typically deterministic and rely on smoothness-constrained formulations, which 
provide stable solutions and rapid convergence but offer limited insight into model uncertainty. This 
limitation is particularly relevant in complex geological environments, where non-uniqueness and 
uneven data sensitivity may strongly affect interpretation. 

Both deterministic and probabilistic inversion methods critically depend on the accurate and 
efficient computation of gradients of the objective function with respect to model parameters. 
Classical approaches for gradient computation include finite-difference (FD) approximations and 
Jacobian–vector (JV) or adjoint-based methods. Although Jacobian–vector products can in principle 
be extended to alternative parameterisations through the chain rule, doing so requires manual 
derivation and implementation of dense mappings, making the approach considerably less flexible 
and efficient than automatic differentiation, which supports such transformations natively. 

Recent advances in machine learning have promoted the widespread use of automatic 
differentiation (AD) as a general and exact tool for gradient computation. AD enables machine-
precision derivatives through arbitrary sequences of differentiable operations, eliminating the need 
for explicit Jacobian construction or adjoint derivations. Despite its success in seismic and other 
geophysical inverse problems, the application of AD to ERT inversion—particularly in probabilistic 
frameworks and reduced-order parameterisations—remains largely unexplored. In this work, we 
introduce ADERT, a fully differentiable framework for electrical resistivity tomography inversion 
based on automatic differentiation. ADERT reimplements the ERT forward modelling engine within 
the PyTorch ecosystem, allowing gradients to be computed seamlessly through the entire modelling 
pipeline. We validate the accuracy and efficiency of AD-based gradients against classical FD and JV 
approaches, and we demonstrate the flexibility of the framework through deterministic and 
probabilistic inversions. Special emphasis is placed on a field-data application, where ADERT enables 
efficient uncertainty quantification using a probabilistic inversion in a compressed model space. 
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Methods 

ADERT is built around a forward modelling engine that reproduces the finite-volume discretisation 
commonly adopted in ERT but implemented entirely using PyTorch tensors. This design ensures that 
all computational steps—including conductivity transformation, system matrix assembly, solution 
of the Poisson equation, and data projection—are embedded within a differentiable computational 
graph. As a result, simulated data are fully differentiable with respect to the resistivity model, 
enabling exact gradient computation via reverse-mode automatic differentiation. From a theoretical 
perspective, the forward operator ℱ can be expressed as a composition of elementary differentiable 
operations acting on the model parameters. Automatic differentiation evaluates the total derivative 
of ℱ with respect to the model " by recursively applying the chain rule through all intermediate 
variables, such that: 

∂ℱ
$" = $&!

$&!"#
. $&!"#$&!"$

. $&#$". 

This recursive application of the chain rule propagates derivatives from " through all intermediate 
computations &% = (%)&& , &! , … ,. In this way, ADERT computes exact gradients efficiently and at 
machine precision, without requiring manual derivation or explicit Jacobian storage. The resulting 
gradients are both accurate and computationally efficient, thanks to reverse-mode accumulation. 
Unlike symbolic or numerical differentiation, automatic differentiation operates directly on the 
computational graph, supports dynamic control flow, and avoids approximation errors, making it 
particularly well suited for large-scale, differentiable physics-based simulations. 

To assess the accuracy of AD-based gradients, we compare them against two benchmark methods: 
finite-difference approximations of the Jacobian and the Jacobian–vector (JV) approach 
implemented in the SimPEG framework. Finite differences provide a straightforward reference but 
are computationally expensive and sensitive to perturbation size. The JV method efficiently 
computes gradients without storing the full Jacobian, but relies on manually derived sensitivity 
expressions tied to the full-domain discretisation. All gradients are evaluated with respect to the 
same least-squares objective function to ensure a fair comparison. Beyond deterministic inversion, 
ADERT supports probabilistic inference through gradient-based variational methods. In the 
deterministic setting, we solve the ERT inverse problem using a smoothness-constrained 
formulation optimized with the L-BFGS-B algorithm, where gradients of the objective function are 
computed exactly via automatic differentiation. This approach provides fast convergence and stable 
solutions while serving as a reference model for subsequent uncertainty analysis. For probabilistic 
inversion, we adopt Annealed Stein Variational Gradient Descent (A-SVGD), a particle-based 
variational inference method that approximates the posterior distribution by iteratively 
transporting an ensemble of particles toward regions of high posterior probability (D’Angelo & 
Fortuin, 2021; Corrales et al., 2025; Berti et al., 2025). The algorithm incorporates an annealing 
schedule that dynamically balances repulsive and attractive interactions between particles, enabling 
broad exploration of the model space during early iterations and progressive convergence toward 
dominant posterior modes at later stages. Here again, the gradients required by A-SVGD are 
efficiently computed via AD, allowing efficient probabilistic inversion even when operating in 
reduced or transformed parameter spaces. 

To reduce computational cost and mitigate ill-conditioning, we adopt a Discrete Cosine Transform 
(DCT) parameterisation of the resistivity model for the probabilistic inversion (Aleardi et al., 2021, 
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Rincón et al., 2025). Only a subset of low-frequency DCT coefficients is retained, significantly 
reducing the number of unknowns. Unlike classical approaches—where gradients in the 
compressed domain would require finite differences or manual chain-rule derivations—ADERT 
allows gradients to be back-propagated directly from the data to the retained DCT coefficients, with 
no additional implementation effort. 

 

Results 

Gradient comparison: To evaluate the accuracy and efficiency of the AD-based gradients 
implemented in ADERT, we first compare them against FD and JV gradients for a synthetic ERT 
benchmark. Figure 1 illustrates the spatial distribution of the gradients computed using the three 
approaches for the same reference model and objective function. All gradients exhibit consistent 
sensitivity patterns, with the highest amplitudes concentrated beneath the electrode array and 
around the target anomaly. Minor discrepancies are limited to shallow regions where the problem 
is strongly non-linear. From a computational perspective, the AD-based gradient achieves a 
substantial speedup relative to FD approximations and comparable or improved performance with 
respect to the JV method, particularly when executed on GPUs. These results demonstrate that 
automatic differentiation provides both numerical accuracy and computational efficiency, validating 
its use as a reliable alternative to traditional sensitivity-based approaches for ERT inversion. 

 

Fig. 1 – Spatial distribution of gradients computed using (a) finite differences, (b) the Jacobian–vector method, and (c) 
automatic differentiation for a synthetic resistivity model. The three approaches exhibit consistent sensitivity 

patterns, confirming the accuracy of AD-based gradients. 

 

Field data application: Now we show the performance of ADERT using a field dataset acquired along 
a 208 m-long profile over a landslide-prone area. The dataset consists of 198 apparent resistivity 
measurements collected with 8 m electrode spacing, with the primary objective of delineating 
subsurface resistivity contrasts potentially associated with the landslide rupture surface. A 
deterministic inversion using AD-based gradients converges rapidly from a homogeneous starting 
model and achieves a strong reduction in data misfit. The recovered resistivity image reveals a 
shallow conductive layer overlying a more resistive domain at depth, consistent with previous 
geological interpretations of the site (see Figure 2).  

0

5

10de
pt

h 
(m

)

0

5

10de
pt

h 
(m

)

50

-1 1

150

normalised gradient

resistivity (Ω.m)

distance (m) distance (m) distance (m)0 35 0 35 0 35

(a) true resistivity model (b) reference model

(c) gradient computed using FD (d) gradient computed using JV (e) gradient computed using AD



Session  3.3                    GNGTS 2026 

 

 

Fig. 2 – Results from the deterministic inversion using ADERT. (a) Predicted resistivity model showing near-surface 
conductive features and deeper resistive structures. (b) Observed and (c) predicted apparent resistivity 

pseudosections. The inversion converged to a final normalised misfit of 5.3 %. 

 

We then perform a probabilistic inversion using the Annealed Stein Variational Gradient Descent (A-
SVGD) algorithm in a DCT-compressed model space. In the following experiment, we assess 
inversion performance using 300 particles and 500 iterations. The prior assumptions are illustrated 
in Figure 3, where the prior mean corresponds to a homogeneous model of 800 Ω.m. Figure 3b 
shows two prior realisations drawn from a Gaussian distribution with exponential correlograms 
describing horizontal and vertical spatial correlations. 

 

Fig. 3 – (a) Prior mean resistivity model. (b) Two random prior realisations sampled from the Gaussian covariance 
function. (c) Exponential correlograms along the horizontal (!) and vertical (") directions, used to construct the prior 

covariance. 

 

Following Rincón et al. (2025), who inverted the same field dataset, we retained 10×30 coefficients 
along the horizontal (/) and vertical (0) directions, preserving 99 % signal information while 
achieving significant compression. Figure 4 shows the posterior mean resistivity model and the 
corresponding posterior standard deviation obtained from the final ensemble of particles. The 
posterior mean closely resembles the deterministic solution but displays sharper resistivity 
contrasts and improved delineation of subsurface features. The posterior standard deviation 
highlights zones of increased uncertainty at depth and near the lateral boundaries, where data 
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sensitivity is reduced. Uncertainty systematically increases with depth, reaching several hundred 
Ω·m in poorly constrained regions. By incorporating AD and DCT into the probabilistic approach, the 
overall computational cost is reduced by more than 50 % compared to a full-domain AD 
implementation, making uncertainty quantification feasible for realistic ERT field datasets. 

 

Fig. 4 – Results from the probabilistic inversion using ASVGD. (a) Posterior mean resistivity model obtained by 
averaging all particles at the final iteration. (b) Posterior standard deviation quantifying the uncertainty of the 

estimated resistivities. 

 

Conclusion 

This work introduces ADERT, a fully differentiable framework for electrical resistivity tomography 
inversion that leverages automatic differentiation to compute exact gradients through the entire 
forward modelling pipeline. Gradient comparisons confirm that AD-based derivatives are consistent 
with classical finite-difference and Jacobian–vector approaches, while offering superior flexibility 
and competitive computational performance. The field-data application demonstrates that ADERT 
enables robust deterministic inversion and efficient probabilistic inversion with meaningful 
uncertainty quantification. By allowing gradients to be computed directly in compressed parameter 
spaces, ADERT overcomes key limitations of traditional sensitivity-based methods and significantly 
reduces computational cost. Overall, ADERT provides a powerful and extensible platform for next-
generation ERT inversion, bridging numerical modelling and modern differentiable programming. 
Its flexibility makes it well suited for advanced parameterisations, probabilistic inference, and future 
extensions to multi-physics and three-dimensional problems. 
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Introduction 

High-resolution imaging of the near-surface is essential for landslide hazard assessment, aquifer 
characterisation, and geotechnical planning. Geophysical methods offer a non-invasive way to 
estimate subsurface properties, yet interpretations based on a single parameter are often 
ambiguous because inverse problems are non-unique and each method has distinct resolution 
limits. Seismic methods are among the most robust tools for recovering mechanical properties. 
Near-surface records are typically dominated by high-amplitude surface waves. Conventional 
method using Multi-channel Analysis of Surface Waves (MASW) extracts dispersion curves to invert 
for 1-D shear-wave speed (!!) profiles. While effective for layered media, MASW is challenged by 
strong lateral heterogeneity and topography. Full Waveform Inversion (FWI) provides a more 
comprehensive alternative by exploiting the entire seismic wavefield, including scattering and 
diffraction effects (Fichtner, 2013). Near-surface elastic FWI has demonstrated high-resolution 
recovery of subsurface models, but it remains sensitive to starting models and strongly nonlinear. 
Probabilistic and deep-learning approaches have been proposed to mitigate non-uniqueness and 
quantify uncertainty in inversion problems (Rincón et al. 2025). 

Electrical resistivity tomography (ERT) is widely used due to its low cost and sensitivity to porosity, 
saturation, and fluid pathways (Binley et al., 2015). Standard smoothness-regularised inversions 
stabilise the ill-posed DC problem but often produce overly smooth anomalies (Loke and Barker, 
1996). Recent probabilistic and learning-based strategies improve uncertainty quantification and 
reduce regularisation bias (Rincón et al., 2025), yet ERT alone remains limited by diffusive sensitivity 
and a large null-space. Given their complementary sensitivities, joint inversion of seismic and 
electrical data can reduce ambiguity (Moorkamp, 2017; Rincón et al., 2020; Zhdanov et al., 2021). 
Most near-surface applications combine Seismic Refraction Tomography (SRT) and ERT (Gallardo 
and Meju, 2004; Hellman et al., 2017) whereas joint FWI-EM studies remain scarce and are often 
restricted to synthetic or very shallow settings (Ma et al., 2025). Here we propose a structurally 
coupled joint inversion of surface-wave FWI and ERT using the cross-gradient operator, avoiding 
explicit petrophysical assumptions (Wagner et al., 2021). In this paper we present preliminary 
synthetic results that demonstrate how FWI constraints can sharpen diffusive ERT images and 
stabilise the recovery of near-surface structure under topography. 
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Methods 

Joint objective function 

We consider two model parameter fields: the shear-wave speed model ""($. &. , !!) and the 
resistivity model "! (or equivalently log-resistivity). The joint inversion is formulated as the 
minimisation of a total objective function: 

Φtotal*"" , "'+ = ΦFWI("") + ΦERT*"'+ + . ΦXG*"" , "'+, 

where ΦFWI and ΦERT are least-squares misfit terms (including standard 
stabilisation/regularisation), ΦXG is the cross-gradient coupling functional, and . is a weighting 
parameter controlling the strength of structural coupling. 

Cross-gradient structural coupling 

In 2-D, the cross-gradient is defined as the scalar (out-of-plane) component of the cross product 
between the spatial gradients of the two parameter fields: 

0(1, 2) = ∇""(1, 2) × ∇"'(1, 2) =
∂""
∂1

∂"'
∂2 − ∂""

∂2
∂"'
∂1 . 

When 0(1, 2) = 0, the gradients are parallel (or anti-parallel), implying that structural boundaries 
(changes in !! and resistivity) align spatially even if the parameter values are not linearly correlated. 
The coupling term is defined as: 

ΦXG*"" , "'+ = 8 |0(1, 2)|0
1

 :Ω. 

This formulation avoids site-specific petrophysical assumptions (e.g., Archie-type relations) while 
still allowing the two modalities to “communicate” through shared structure. 

Forward modelling and gradients 

For the seismic component, we model elastic wave propagation and compute gradients using the 
adjoint-state method (Tarantola, 1984). In practice, this corresponds to correlating the forward 
wavefield with the back-propagated residual (adjoint) wavefield, yielding ∇2"ΦFWI. Seismic wave 
propagation and the associated adjoint wavefields are simulated with the spectral-element 
framework Salvus (Afanasiev et al., 2019), which enables accurate and efficient solution of the 
elastic wave equation on unstructured meshes. For the ERT component, we solve the Poisson 
equation and compute sensitivities using the Jacobian–vector machinery available in SimPEG 
(Cockett et al., 2015), yielding ∇2#ΦERT. The optimisation is performed with L-BFGS-B, which is 
suitable for large parameter spaces and allows bound constraints. 

Complementary resolution illustrated by sensitivity kernels 

The rationale for coupling is supported by sensitivity kernels (Fig. 1). Dipole–dipole ERT kernels 
exhibit broad positive–negative lobes beneath the current and potential dipoles, reflecting the 
diffusive nature of current flow. Increasing electrode spacing increases depth of investigation but 
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reduces lateral resolution. Conversely, surface-wave Fréchet kernels at a given frequency are 
controlled by wavelength: higher frequencies concentrate sensitivity in the shallowest metres, while 
lower frequencies illuminate deeper regions. At 30 Hz (Fig. 1b), the minimum resolvable wavelength 
is λ234 ~13 m, producing a shallow, high-resolution sensitivity zone. The reference models for both 
FWI and ERT are taken to be laterally homogeneous and equal to the background value (~	400 m/s 
and ~400 Ω .m). Therefore, ERT tends to provide stable, depth-reaching but smooth constraints, 
whereas surface-wave FWI provides higher spatial resolution but stronger nonlinearity and 
illumination dependence—a natural setting for structural coupling. 

Fig. 1 – Sensitivity kernels illustrating the complementary resolving capacity of electrical and seismic settings: (a) 
dipole–dipole ERT sensitivity for an electrode spacing of a = 8 m; (b) surface- FWI Fréchet kernel at 30 Hz, highlighting 

the minimum resolvable wavelength (!$%& ~13 m). 

 

Results 

We design a synthetic checkerboard experiment where both !! and resistivity share identical 5×5 
m2 anomalies under realistic topography. Seismic data were simulated with 24 geophones spaced 
at 4.5 m and 11 vertical-impact sources placed at regular intervals midway between receiver pairs. 
ERT data were collected on the same line using a dipole–dipole array spaced at 2 m. Starting from 
laterally homogeneous models, we compute the individual misfit gradients and the cross-gradient 
field. The FWI gradient (Fig. 2b) shows strong localisation beneath the source–receiver aperture and 
follows the acquisition illumination: gradient energy concentrates where surface-wave sensitivity is 
highest, and boundaries of the checkerboard are partially expressed, but weaker illumination 
regions show reduced recoverability. The ERT gradient (Fig. 2c) is smoother and more diffuse, with 
broad lobes and limited ability to reproduce small blocks, consistent with DC physics and 
smoothness regularisation. The cross-gradient term (Fig. 2d) is sharply localised within the anomaly 
region and suppresses updates outside it, effectively acting as a structural “mask” that promotes 
coherent changes where both methods expect boundaries. This confirms that ΦXG introduces 
information that is not contained in either single-physics gradient alone. 

We then compare three inversion strategies on synthetic data: FWI-only, ERT-only, and joint FWI–
ERT with cross-gradient coupling. The FWI-only inversion (Fig. 3a) recovers several anomalies with 
relatively sharp boundaries in the best-illuminated zone, but exhibits misplaced or merged blocks 
and reduced sensitivity at depth, reflecting limited illumination and nonlinearity. The ERT-only 
inversion (Fig. 3b) captures the broad conductive/resistive trend but strongly smooths the 5×5 m2 
anomalies, leading to low-contrast, laterally smeared features typical of DC inversion with 
smoothness constraints. 
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The joint inversion (Fig. 3c–d) yields the most structurally consistent reconstruction: the resistivity 
model becomes significantly better focused, with sharper block boundaries and reduced smearing 

  

Fig. 2 – Synthetic sensitivity analysis for the checkerboard experiment. (a) True checkerboard model used to generate 
the seismic and electrical data, consisting of alternating 5 × 5 m2 anomalies in both !! and resistivity. (b) Normalised 
FWI gradient ∇%'&()* computed from a single iteration starting from a homogeneous !!  model. (c) Normalised ERT 

gradient ∇%+&,-. obtained from the DC data. (d) Cross-gradient field '(), +) highlighting regions where the structural 
variations in !!  and resistivity are aligned. The comparison illustrates how the cross-gradient term provides strongly 

localised structural information that is not captured by the individual gradients, thereby motivating its use in the joint 
inversion framework. 

compared with ERT-only, while the recovered !! model remains comparable in resolution to the 
FWI-only result. Importantly, anomalies in !! and resistivity become spatially aligned, indicating that 
the cross-gradient successfully enforces shared structural trends without imposing a specific 
functional correlation. Quantitatively (as reported in the synthetic benchmark), the joint approach 
reduces the resistivity reconstruction error relative to ERT-only while maintaining the seismic 
reconstruction quality close to the standalone FWI case, demonstrating that the framework 
effectively exploits complementary sensitivities. 

 

Fig. 3 – Synthetic inversion results for the checkerboard experiment. (a) FWI-only inversion of the shear-wave speed 
-/. Several anomaly blocks are partially recovered, but the solution exhibits merged or misplaced structures and 

reduced sensitivity at depth, with a relative error of 0.41% with respect to the true model. (b) ERT-only inversion of 
the resistivity field. The diffusive nature of DC data and smoothness regularisation smear out the 5×5 m 2 anomalies, 
yielding a broad low-contrast region and a relative error of 0.81%. (c) Joint FWI–ERT inversion result for V S obtained 
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using the cross-gradient constraint. The anomaly blocks are more sharply resolved and better aligned with the true 
geometry. (d) Corresponding joint resistivity model, where the anomalies are significantly better focused and 

structurally consistent with the recovered  -/ field. The joint inversion achieves the lowest errors, with relative misfits 
of 0.44% for V S and 0.49% for resistivity, demonstrating the benefits of exploiting the complementary sensitivities of 

the two methods. 

 

Conclusion 

These preliminary synthetic results show that cross-gradient coupling provides an effective, 
petrophysics-free mechanism for joint surface-wave FWI–ERT imaging. Sensitivity kernels highlight 
the complementary resolving capacity of the two methods: FWI supplies high-resolution, 
wavelength-controlled structural information, while ERT contributes stable depth sensitivity but 
suffers from smoothing bias. The checkerboard experiments demonstrate that the cross-gradient 
term adds focused structural guidance that improves resistivity recovery and promotes consistent 
multiphysics interpretation. Ongoing work extends the method to field data from an active landslide 
complex. 
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Recent advances in inertial sensors have enabled the operational use of strapdown systems for 
airborne gravity-field acquisition achieving accuracy levels and spatial resolution suitable for 
geodetic and geophysical applications. Instruments such as the iMAR iCORUS-2 gravimeter integrate 
high-performance accelerometric sensors, thermal control systems, and GNSS receivers, allowing 
continuous acquisition of gravimetric data during flight without traditional stabilized mechanisms. 
These capabilities enable dense, methodical airborne gravity surveys that can rapidly span extensive 
regions while maintaining mGal-level accuracy (1 mGal = 10⁻⁵ m/s²). The resulting gravity data are 
well suited for subsurface modelling and for determining geodetic reference surfaces such as the 
geoid. 

Within this framework, the Ministero dell’Ambiente e della Sicurezza Energetica (MASE), under the 
National Recovery and Resilience Plan, is implementing a national program for the integrated 
production of a digital terrain model and a gravity-field model covering the entire Italian territory. 
The initiative pursues two main goals: the generation of a new Digital Surface Model and Digital 
Terrain Model (DSM, DTM) based on high-resolution LiDAR data (10 points/m²), and the 
development of a new, homogeneous, high-resolution airborne gravity dataset together with the 
associated geoid model. These outputs constitute an essential element of the National Integrated 
Surveillance and Monitoring System (SIM — Sistema Integrato di Monitoraggio). 
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Focusing on the airborne gravity surveys, data acquired by the inertial system—specifically 
accelerations and angular rates sampled at 400 Hz—were integrated with magnetometer readings 
(also at 400 Hz) and GNSS data (sampled at 5 Hz) using a direct estimation method (Johann et al., 
2019). In details, once the aircraft trajectory and attitude are determined via a Kalman filter, the 
inertial accelerations are aligned to the vertical component and then combined with accelerations 
derived from GNSS to obtain an initial gravity estimate. This preliminary gravity signal is finally 
processed with the filtering strategy proposed by Sampietro et al. (2017). 

Two test regions, covering the northern Tuscan–Emilian Apennines and the Maremma Laziale areas, 
have been acquired and processed. Results show the possibility to derive gravity-field grids 
achieving accuracies of about 1 mGal and a spatial resolution better than 2.5 km. 
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Local site conditions can markedly influence earthquake ground motion by controlling amplification, 
duration, and spatial variability. When shaking is sufficiently strong, near-surface soils may enter a 
nonlinear regime in which large strains modify their mechanical properties, decreasing shear 
modulus and increasing damping, and may even trigger liquefaction or permanent deformation. 

In situ nonlinear site response can be inferred from surface-borehole seismic recordings through 
observed frequency changes, such as empirical transfer functions, or velocity changes estimated via 
seismic interferometry. However, the magnitude of these variations may be influenced by factors 
beyond the intrinsic nonlinear behavior of near-surface materials. 

Since nonlinear effects are typically concentrated in shallow layers, it remains unclear how the 
response of the entire soil column between surface and borehole sensors contributes to the 
observed measurements. In particular, the dependence of inferred velocity changes on the 
separation between surface and borehole instruments is not well constrained. Additionally, the 
contribution of the downgoing wavefield at borehole sensors may further affect the interpretation 
of interferometric results. 

To address these questions, we develop a one-dimensional numerical modeling framework to 
investigate how seismic interferometry captures velocity variations under different site response 
regimes. Both equivalent-linear and fully nonlinear constitutive behaviors are considered to explore 
their impact on interferometric observables. 

By systematically varying the distance between surface and borehole sensors and the depth 
distribution of velocity changes, we aim to clarify the sensitivity, limitations, and interpretability of 
interferometry-based velocity monitoring for nonlinear site response studies. This ongoing work 
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provides methodological guidance for the analysis and design of surface–borehole seismic 
deployments. 
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Inves&ga&ng Borehole TDIP Response in the 
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As part of a mul9disciplinary effort to characterize the deep con9nental crust, two scien9fic 
boreholes were drilled in the Ivrea Verbano Zone (IVZ, Western Alps, Italy), one of the few 
near-complete con9nental crustal sec9ons exposed on Earth's surface (Pistone et al. 2020). 
The boreholes were realized within the Drilling the Ivrea Verbano ZonE (DIVE) project, 
supported by the Interna9onal Con9nental Scien9fic Drilling Program (ICDP-5071; Li et al. 
2024). Among various in-situ measurements, 9me-domain induced polariza9on (TDIP) 
surveys were conducted in both wells, acquiring borehole chargeability data with two 
electrode spacings (16ʺ and 64ʺ). 
The boreholes intersect a wide range of lithologies hos9ng sulfides and oxides, either 
disseminated or concentrated along veins and fractures, which represent poten9al sources of 
chargeable response. A set of 11 samples from these boreholes was previously analyzed for 
petrological and structural purposes using both scanning electron microscopy (SEM) and 
micro-computed tomography (microCT). Star9ng from these analyses, the study seeks to 
understand and, where feasible, quan9fy the role of specific petrophysical proper9es in 
shaping borehole chargeability. 
The following petrophysical characteris9cs have been evaluated so far: the abundance of 
metallic minerals (expressed as volume and area frac9ons), the perimeter-to-area and 
surface-to-volume ra9os, the connec9vity density, and the preferred orienta9on of these 
conduc9ve phases. 
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Preliminary observa9ons suggest that:  

• Borehole chargeability is not simply propor9onal to the abundance of metallic 
minerals;  

• As intui9vely expected from polariza9on theory, the number of ac9ve surfaces plays a 
dominant role over the total volume; 

• The preferred orienta9on of conduc9ve phases appears to be a key factor influencing 
the measured chargeability; 

• The presence of other mineral phases, such as graphite, may mask or amplify the 
response of metallic minerals depending on their structural rela9onship. 

While no determinis9c rela9onship has been iden9fied at this stage, this work outlines a 
poten9al path to improve the interpreta9on of TDIP data in mineralized systems and to define 
complementary yet efficient tools for assessing the economic poten9al of deep rock 
forma9ons in the context of mineral explora9on. 
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1 Introduction 

Electrical Resistivity tomography (ERT) is a geophysical method widely used in near-surface and 
mining exploration. The associated inverse problem is ill-conditioned, with the number of 
unknowns exceeding the number of data points, and is nonlinear, which leads to non-uniqueness 
of the solution. These issues become more severe in the case of 3D inversion, where the number 
of uknowns increases dramatically due to the three-dimensional discretization of the half-space. 
For these reasons can be relevant to evaluate the reliability of the solution through the estimation 
of the associated uncertainty. In order to estimate the uncertainty, an efficient ensemble-based 
algorithm which is feasible for 3D inversion. The Ensemble-based algorithms, and in particular the 
Ensemble Smoother Multiple Data Assimilation by Emerick and Reynolds 2013, has been 
succesfully applied by Vinciguerra et al., 2024 and Vinciguerra et al., 2025 in near surface and 
mining exploration ERT data inversion to approximate the posterior probability density function 
(pdf) associated with the 2D inverse problem solution. Usually, in case of 3D inversion, the number 
of parameters increases exponentially with the dimension of the model, giving rise to time 
consuming inversion, and increment of the required memory (Loke et al., 2022). Consequently,  
Bayesian inversion is rarely used for full 3D  problems due to the huge computational burden 
needed. To address these issues, reparameterization strategies can be employed, such as the 
Discrete Cosine transform and the Wavelet transform (Loke et al., 2022), which reduces the 
number of model parameters and, consequently, the computational cost and required memory. 
However, because those transformations are lossy, they lead to a loss of spatial resolution, 
particularly when the model space is significantly reduced. For this reason, in this work we 
propose an alternative strategy to reduce the model space and make the Bayesian inversion 
feasible for the 3D inversion. Specifically, we employ a subspace ensemble-based algorithm 
developed by Raanes et al., 2019 and Evensen et al., 2019 which has already been applied to 
reservoir history matching and oceanography. This approach recasts the problem by seeking the 
solution within the subspace spanned by the prior ensemble of models. As a test about feasibility 
of the Bayesian approach we apply the algorithm to synthetic 3D model composed by two targets 
of different resistivity within an homogeneous half-space. 

2 Methods 

The target pdf could be approximated through an ensemble-based method minimising an 
ensemble of cost functions for each realization as: 

!"#!$ = "
# "#! −#!

$$%'&'""#! −#!
$$ + "

# ")"#!$ − *!$
%'('"")"#!$ − *!$  (1) 
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where #!  is the j-th ensemble member, #!
$ is the j-th ensemble member of the prior ensemble, ) 

is the forward operator, '& is the model covariance matrix, '(  is the data covariance matrix of 
dimension #+# and *!  is the observed data of dimension #. Since our objective is to search for 
the solution within the ensemble subspace (Evensen et al., 2019, Raanes et al., 2019), we define 
the prior ensemble of model as: 

, = "#"
$, ##

$, . . . , #)
$ $  (2) 

with /*  size of the ensemble and we define the zero-mean anomaly matrix as: 

0 = ,12)! −
"
)!
11%4 5(/* − 1)8  (3) 

where 1 ∈ ℝ) is a vector of ones, 2)!  is the identity matrix of dimension /*+/*, the matrix 2)+ −
"
)"

 subtract the mean from ,. Evensen et al., 2019 and Raanes et al., 2019 suggests that the 

solution is confined to the space spanned by the prior ensemble. Thus, we will search for the 
solution in that space assuming that an updated ensemble  ,, is equal to the prior ensemble, ,$ 
plus a linear combination of ensemble anomalies 0, 

,, = ,$ + 0;     (4) 

where ; has dimension /*+/*, then we rewrite the cost function for the j-th column of ; as 

!"<!$ = "
#<!

%< + "
# ")"#!$ − *!$

%'('"")"#!$ − *!$    (5) 

Evensen et al., 2019 suggests that minimizing (5)  corresponds find the minima of the original cost 
function (1) but restricted on the ensemble subspace. Thus, we are now searching for a solution in 
a much smaller model space, solving for the /*  vectors <! ∈ ℝ)!. 

2.1 Sensitivity approximation 

To minimize the cost function in (5), our strategy is to employ a Gauss-Newton method for each 
ensemble member, approximating the jacobian from the ensemble of models and data. In 
particular, we compute the average sensitivity = at iteration > from the ensembles by linear 
regression as (Evensen et al., 2019): 

      =- = ?-@-'"     (6) 

where 

     ?- = )(A-) 12)! −
"
)!
11%4 5(/* − 1)8              (7) 

is the predicted data ensemble anomalies, whereas @-  is: 

    @- = 2 +;- 12)! −
"
)!
11%4 5(/* − 1)8            (8) 

Thus, we can write the ensemble of models update at iteration > as: 
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                                                           ;-." = ;- − B(;- − =-%(=-=-% + '()'"C)            (9) 

where B ∈ (0,1] is the step length parameter and C is 

     C = =-;- + D − )(,-)                     (10) 

 where D the ensemble of perturbed observed data. In terms of dimensionality, the matrix ;-  has 
dimension /*+/*, the average sensitivity has dimension #+/*  and C has dimension #+/*. From 
the equations above it is evident that the reformulation of ensemble based in the subspace 
domain is able to reduce the model space dimension, linking the size of the ensemble to the 
number of unknowns of the problem.  

Synthetic test 

To test the approach we build a simple model composed by two spheres of radius 165 m at depth 
of 100 m and having a resistivity of 10 @ ⋅ # and 1000 @ ⋅ # embedded in a homogeneous half-
space of 100 @ ⋅ # (Cockett et al., 2015). The model is discretized using an octree mesh, in which 
cell dimensions are powers of two larger than a prescribed base cell size, thereby keeping the total 
number of cells computationally feasible (Cockett et al., 2015). The modelling domain has 
dimension x, y, z of 8000, 8000, 4000 m for a total number of 85026 tetraedrical cells, whereas the 
inversion mesh is composed by 71176 cells. The data is simulated through Simpeg open source 
library (Cockett et al) with a dipole-dipole configuration composed by six lines, which performs a 
3D acquisition.                                                                    We generate the prior ensemble of models 
using GSTools library (Müller et al., 2022), adopting a Gaussian random field generator in 
accordance with the assumption of prior Gaussianity. As  described in the previous section 
(Equation 5 and 9), the ensemble size directly determines the number of unknowns of the inverse 
problem. Consequently, its choice has to be a compromise between computational cost, model 
space dimension and robust approximation of the pdf. In this example, we generate an ensemble 
of 2000 models, which substantially reduces the model space from 71176 to 2000.  The inversion 
algorithms converges in few iterations for a total computational time of 13 hours in a laptop 
equipped with Intel Core i7-1165G7 @ 2.80GHz. Both targets are well recovered, as indicated by 
model slices normal to the Y-axis (Fig. 1c) and to the Z-axis (Fig. 1d). Moreover, the root mean 
square error of the predicted data is 3.3%. The ensemble-based inversion provides an 
approximation of the pdf, from which we can represent the standard deviation as a 3D volume 
(Fig. 2a, clip normal to the Y axis) or as marginal distributions associated with individual model 
cells. Fig. 2b illustrates the marginal distribution corresponding to a tetrahedral cell of the 
homegeneous half-space, whereas Fig. 2c, 2d and Fig. 2e and 2f display one of the marginals pdf of 
the high-resistivity and low-resistivity sphere, respectively. Fig. 2a, which represents the standard 
deviation volume corresponding to the clip of Fig. 1c, exhibits low values of standard deviation 
close to the surface. 
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Fig. 1 – a) Clip of the 3D synthetic model perpendicular to Y axis. b) Clip of the 3D synthetic model perpendicular to Z 
axis. c) Estimated mean model, clip normal to the Y axis. d)Estimated mean model, clip normal to the Z axis. 
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Fig. 2 – a) Volume of standard deviation values b) Marginal pdf associated with the homogeneous half-space c) and d) 
Marginal pdfs associated with the high resistive sphere. e) and f) Marginal pdfs associated with the low resistive 
sphere. 

Conclusions 

This work introduces an alternative approach to invert ERT data in the Bayesian framework in a 
large model space dimension without using lossy transform methods. As suggested by the 3D 
synthetic test, where the anomaly shapes are reasonably well reconstructed in a feasible 
computational time, the subspace ensemble-based algorithm appears promising for mitigating ill-
conditioning of the problem and reducing the computational cost. Moreover, uncertainty 
quantification, expressed as a volume of standard deviations or 3D posterior realizations, can be 
used to identify the most reliable regions of the model. 
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Introduction 
Archie’s law is one of the most widely employed methods for the determination of electrical 
conductivity of partially saturated porous media. The traditional Archie’s law (Archie, 1942) and the 
modified one (Glover et al., 2000) hold the following forms: 

m n
unsat w wS  = ,   (1) 

( )1m n m
unsat w w sS    = + − ,   (2) 

where σunsat is the conductivity of the overall unsaturated porous medium; σw and σs are the 
conductivities of the pore water and the solid grains respectively; ϕ is the porosity; Sw is the water 
saturation; m is the cementation exponent and n is the saturation exponent. Archie law is highly 
dependent on the appropriate selection of m and more importantly of n. Several experimental 
results illustrate that n is approximately 2 for the majority of water saturated rocks (e.g., Mavko et 
al., 2009). Although n has been considered constant and unrelated to saturation levels, some new 
perspectives suggest that n should vary with saturation (e.g., Worthington & Pallatt, 1992; Glover, 
2017). We analyzed a database of some representative resistivity measurements performed on 
partially saturated water-wetted porous media (Weerts et al., 1999; Han et al., 2009; Tang 2019; 
Han et al., 2020; Mustofa et al., 2022; Pang et al., 2024) and evaluated the variability of n for 
different saturation levels. The obtained results show that n under a given degree of saturation can 
be less than 1.5 and even less than 1. Such “abnormal” saturation exponent value indicates that 
new constraints on the saturation exponent value are required. This work aims to define such 
constraints, by proposing a theoretical lower bound for the saturation exponent (denoted as LBSE 
here).  

Theory  
We assume that the pore water adheres to the solid surface and it is fully and homogeneously 
connected. The solid matrix is idealized as a series of spheroidal grains with a specific aspect ratio, 
and residual water is considered as a uniform film adhering to the grain surfaces. The effect of the 
water on the solid grains is represented as a modification in their shapes. These shape-modified 
spheroids are subsequently employed to calculate the cementation exponent of the pore space 
occupied by air (or oil). The water saturation exponent is then determined by quantifying the 
connectedness of the residual water adhering to the solid surface. The obtained saturation 
exponents vary with saturation and are here considered as a theoretical lower bound,  
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corresponding to the highest water connectivity. The microstructure of our hypothesized 
unsaturated porous medium is shown in Figure 1a. A similar structure has been reported in Fukue 
et al., (1999). The water film is assumed adhering homogeneously at the grains’ surface (Figure 1b). 

 

Fig. 1 – (a) A schematic representation of the water distribution in the pore space according to our assumptions; (b) A 
schematic representation of the water film surrounding the spheroidal grain. 

Following derivation, we propose a formulation of the LBSE in the form: 

( )
( )

ln ln ln1
ln ln ln

im
w

w w w

S
LBSE m

S S S

    


 − −   = + − 
 

,   (3) 

where ϕ is the porosity; m is the cementation exponent; Sw is the saturation. The parameter i is the 
cementation exponent of the residual pore space, which can be expressed by the aspect ratio β of 
deformed grains: 
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.   (4) 

The aspect ratio β can be obtained by solving the following cubic equation: 

( ) ( ) ( )

3 2

2 2 1 0
1 1 1 1

wS      
   

     − − −
+ + + + − =     − − − −     

.   (5) 

This step can be easily simplifies by built-in functions in some general mathematical software. 

In equation 5, α is the original aspect ratio of the grains, which can be calcualted by solving the 
following equation: 

( )
2

3/22 2

3 36 60 9 1 arccos
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+ − +
= −

− −
.   (6) 
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Although there is no closed-form expressions for α, it can be calculated from m by some inversing 
programs. 

According to the lower bound of the saturation exponent (eq. 3), the lower bound of resistivity 
(denoted as LBR) can be determined as follows: 

1
1m LBSE m

w

w s

SLBR
R R

 
−

 −
= + 
 

.   (7) 

Validation 

The saturation exponent from literature data is used to verify our proposed lower bound. Since the 
calculated lower bound of n is related to the cementation exponent m, the bound varies among 
different samples. To plot all the data points in a single figure, we analyse the difference between 
the real saturation exponents and the theoretical lower bounds: 

reale n LBSE= − .   (8) 

The proposed lower bound can be validated if e is always positive for all data points. As shown in 
Figure 2a, nearly all data points lie above zero, with only a data falling below 0, likely due to 
experimental uncertainty. This distribution supports the validity of the proposed lower bound. 

Figure 2b compares the resistivity lower bound from our LBSE against the HS bound. All data lie 
above our bound except one close to it, in agreement to Figure 3a. In contrast, the HS bound is 
below the data only at low saturation, while it reverses the position with respect the data at high 
saturation. This shows that the LBSE proposed in this work provides a more reliable reference for 
the electrical properties of unsaturated porous media, further confirming its accuracy and 
applicability. 

 

Fig. 2 –(a) The calculated differences between the real saturation exponents of the datasets and their correspondent 
lower bounds; (b) Comparison between our lower bound of resistivity and the HS lower bound. The data points are from 
Mustofa et al., (2022). 

Conclusion 

In this work, a theoretical lower bound of the saturation exponent in Archie’s law for partially 
saturated porous media has been developed. The bound depends on saturation, porosity, and 
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cementation exponent, and it was validated against existing data and the HS bound. It was 
theoretically shown that the saturation exponent in water-wetted media can be less than 1, 
indicating its range should not be limited to more than 1. Although the proposed LBSE does not 
provide exact values, it offers a useful reference for experiments. Testing values below this bound 
may induce errors in other parameters such as porosity or phases’ resistivities. 
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