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An accurate seismic hazard assessment requires reliable estimates of the local site response.
However, commonly used empirical methods have significant limitations. For example, the standard
spectral ratio (SSR) requires many high-quality earthquake recordings, making it impractical in
regions with low to moderate seismic activity. The horizontal-to-vertical spectral ratio (HVSR)
method often fails to accurately determine amplification factors. The noise-based SSR technique
can be biased by anthropogenic noise sources. Furthermore, these methods all neglect the complex
form of the response, as well as the cross-coupling effects among ground motion components.

This study addresses two key questions: (1) Can a broadband complex site response function (CSRF)
be reliably estimated using only ambient seismic noise, and (2) can such a CSRF be used to synthesize
realistic virtual seismograms for earthquakes arriving from arbitrary azimuths?

This study, present a new methodology that combines the extended hybrid standard spectral ratio
and cross-coupling inversion methods. This approach eliminates the need for earthquake recordings
and enables retrieval of the complete 3x3 CSRF tensor. Using three stations, a bedrock station, a
soil "bridge" station, and a basin target station, the CSRF has been computed. Then, by convolving
the computed CSRF with the earthquake recorded at the bedrock station, the virtual seismograms
at the target station are generated.
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Introduction

Locating seismic events is a routine activity for monitoring both natural and anthropic seismic
activity. Distributed Acoustic Sensing (DAS) technology offers a novel category of seismic data that
can be used to improve event location both at regional and local scale (Piana Agostinetti et al.,
2022; Bozzi et al, 2024). However, being a distributed measurement along a Fiber Optic (FO) cable,
DAS data strongly suffers from error correlation among close-by measurement points (so called
DAS channels). Not considering such correlation means assuming DAS measurement for each
single channel as an independent measurement, which is obviously not correct. A widely used trick
in fiber optic seismology is to “downsample" DAS data and, thus, include in monitoring workflow
only a limited number of DAS channels. However, such strategy suffers from two main drawbacks:
(a) the number of DAS channels to be used is generally user-defined, meaning that different
experts could make different choice in “downsampling” the dataset, and (b) downsampling
dramatically reduces the potential of DAS data in locating seismic events, which is based on the full
recording of the seismic wavefield at unprecedented dense spatial sampling. In this study, we
demonstrate that accounting for error correlation in near-by DAS channels robustly improves
seismic event locations, enabling the full use of DAS data in seismic monitoring. Being enable to
estimate and to include the full error covariance matrix of a DAS dataset, coupled with a Bayesian
approach in seismic event location, gives us the possibility of estimating more accurate and more
precise location of seismic events, and more realistic uncertainties in event location. The algorithm
is presented using real-world cases, where seismic sources are man-made in known locations.

Data and Methods

We made use of the DAS recordings for two different experiments, at INGV Pisa and INGV
Grottaminarda, where a FO cable has been trenched at shallow depth. In Pisa, the FO cable was
installed in a a small green area close to INGV building, covering a rectangular area of about 20x30
meters. The seismic source was a hammer hit, repeated 3 times in five different locations, both in
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the centre and on a side of the small green area

(Figure 1).

Figure 1: DAS experiment setting in Pisa: (a) green area close
to the INGV building where he FO cable was trenched; (b)
Sketch of the FO cable geometry from the field notes; and (c)
geometry of the FO cable as derived from notes and tap-

tests data.

In Grottaminarda, the FO cable was installed
outside the INGV building, in a near-by field with a
triangular geometry, with sides of length between
50 and 100 meters. The seismic source was a
seismic gun, “Energizzatore per seismica Isotta”,
and 7 shots where operated in different positions
relative to the FO cable, both inside and outside of

the triangle (Figure 2).
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Figure 2: DAS experiment setting in Grottaminarda: geometry of
the FO cable as derived from notes and tap-tests data, together
with controlled source positions.

As shown in the strain-rate recordings, the full seismic
wavefield can be visually inspected in the DAS data,
and more seismic phases can be used for locating the
event (Figure 3). However, graphical picking tool (e.g.
Xdas, Trabattoni, 2024) can introduce correlation in
the picking errors, due to the fact that the picking is
derived from a continuous line, drawn on the original
data.
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Figure 3: Example of controlled source data recorded in Grottaminarda. (a) the original data; and (b) the graphical
picking of a seismic phase that can be seen along the entire cable, used for locating the event.

We perform the location of the controlled-source events using the approach presented in Riva et
al. (2021) and modified to account for a full covariance matrix of the errors. Based on a Markov

chain Monte Carlo algorithm, such approach is able to extract potentia

III

solutions” (i.e. event
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location) from the Posterior Probability Distribution (PPD) of the investigated parameters. Thus,
the modification required to the original code was only limited to the computation of the
Likelihood of each proposed solution. As a reference, we also perform the location using the
original algorithm, where a diagonal covariance matrix of the errors is considered.

Results

Our preliminary results indicate that: (1) errors in DAS data are strongly correlated, as expected, up
to a 10-15 channels away in our examples; and (2) the ratio between the estimated uncertainty
and the mis-match between true and estimate solutions is generally lower than 2, if error
correlation is considered (i.e. it means that location is generally within 2-sigma from the true
location), while it is generally larger than 4 when error correlation is not included in the workflow

(Figure 4).
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Figure 4: location of a controlled-source event using: (a) diagonal covariance matrix of the error, i.e. considering all
DAS measurements as independent; and (b) full covariance matrix of the error, i.e. including correlation in the errors
on the P-wave picking for near-by DAS channels. The yellow stars indicate the true position of the source, the blue dots
represent potential solutions (i.e. solutions extracted form the PPD), and the green dots show the DAS channel

locations.
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Distributed Acoustic Sensing (DAS), a technology that transforms fiber-optic cables into dense
seismic arrays, has rapidly become a widely used tool for a broad range of Earth and environmental
studies, both onshore and offshore. With the aim of improving our understanding of DAS
instrumental response, this research explores the potential of DAS data for near-surface imaging
through surface-wave analysis.

We present results from a case study in northern Italy, at the margins of the Northern Apennines,
an area of tectonic interest due to the possible surface emergence of a major fault system, the
Stradella thrust, located about 50 km south of Milan. This south-dipping structure represents the
western segment of the Pede-Apennine Thrust Front, situated in the rear of the Emilia Arc thrust
system.

Regional studies carried out for hydrocarbon exploration, based on industrial seismic reflection
profiles and deep well logs, provide valuable insights into the crustal structure and its characteristic
fold-and-thrust geometry. However, their resolution decreases in the uppermost few hundreds of
meters of the crustal succession. This limitation underscores the need for near-surface imaging,
which is essential to assessing the possible tectonic deformation affecting the younger Quaternary
deposits in the study area.

Thus, two fiber-optic cables with a total sensing length of about 550 m were deployed at the site,
and both active and passive DAS data were analyzed to construct a two-dimensional surface-wave
velocity model. The results are compared with those obtained from traditional geophone arrays,
including horizontally polarized sensors, in order to evaluate the relationship between the axial
strain measured by DAS — its intrinsic DAS observable — and the horizontal ground motion in the
same direction recorded by geophones.

At the same site, a single-station ambient-noise survey was conducted to produce contour maps of
the main seismo-stratigraphic reflectors using an independent method. Complementary electrical
resistivity tomography (ERT) data were also collected.
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We discuss the comparison between all datasets, highlighting the potential and limitations of DAS
for near-surface characterization, as well as possible directions for future developments.

Data and Resources

The DAS data were collected within the PRIN project “NASA4SHA — Fault segmentation and
seismotectonics of active thrust systems: the Northern Apennines and Southern Alps as laboratories
for new seismic hazard assessments in northern Italy” (University of Milano-Bicocca research unit,
coordinated by A. Tibaldi; Principal Investigator R. Caputo, University of Ferrara)."

The other data were collected from the University of Bologna.
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Introduction

Recovering seismic velocity and attenuation in geologically complex environments remains one of
the most demanding problems in full waveform inversion (FWI). In viscoacoustic media, strong
intrinsic attenuation, amplitude decay, and phase distortions often coexist with strong low-velocity
anomalies, generating shadow zones that significantly limit the reliability of classical deterministic
inversions.

The Valhall field provides a synthetic example where a shallow gas cloud induces a marked
depression in P-wave velocity (Vp) and a strong reduction in the quality factor (Qp). These effects
significantly complicate the joint recovery of Vp and Qp, and conventional grid-based FWI often
struggles to produce stable and interpretable attenuation models (Yong et al. 2024).

Implicit neural representations have recently gained attention as a viable alternative to traditional
grid-based parametrizations for waveform inversion. Instead of discretizing the subsurface on a
fixed mesh, INRs use neural networks that map spatial coordinates to physical properties in a
continuous domain. Among these approaches, SIREN networks, based on sinusoidal activations,
provide excellent expressivity for oscillatory fields and smooth geophysical structures, while
producing high-quality gradients for optimization (Sitzmann et al. 2020). Their continuous
formulation makes them resolution-independent, inherently multi-scale, and capable of capturing
complex spatial patterns using far fewer parameters than finite-difference grids and employing
random starting points.

In this work, we apply an implicit viscoacoustic FWI (IFWI) based on SIREN networks to the synthetic
Valhall model. The model contains a pronounced shallow gas cloud producing both a strong velocity
depression and an associated attenuation anomaly.

The inversion follows a sequential strategy: first, the Vp is estimated while keeping Qp fixed; then
the recovered Vp is held constant while Qp is inverted. This approach mitigates the well-known
cross-talk between velocity and attenuation and stabilizes the estimation of Qp, which is highly
sensitive to inaccuracies in the velocity model.

To further enhance resolution, we complement IFWI with a short deterministic FWI stage applied
to the grid-sampled models. This hybrid strategy combines the stability and regularizing behavior of
INRs with the fine-scale resolving power of classical deterministic inversions.

To evaluate the performance of the proposed workflow, we also perform a traditional deterministic
viscoacoustic FWI starting from smoothed versions of the true models. This baseline represents an
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idealized deterministic scenario and therefore provides a strong benchmark for assessing
improvements introduced by IFWI.

Method

The subsurface properties are represented through an implicit neural network fg(x), where the
parameters 8 define continuous functions for Vp and Qp at any spatial coordinate x = (x, z). Two
separate SIREN networks are employed, one for Vp and one for Qp. Each network consists of two
hidden layers with 128 neurons each, using sinusoidal activations modulated by a frequency factor
of 10 that enables accurate representation of high-frequency spatial variations. This architecture
provides a balance between expressive capacity and computational efficiency, which is essential for
large-scale multi-parameter inversion.

Forward modelling is performed with Devito (Louboutin et al. 2019) using a Standard Linear Solid
(SLS) viscoacoustic formulation. Gradients for the wave equation are computed through the adjoint-
state method built in Devito, while derivatives with respect to the neural network are obtained by
automatic differentiation.

The network takes spatial coordinates as inputs and outputs the physical parameter of interest; the
inversion therefore modifies only the network weights, while the model is sampled on demand at
the grid nodes required by the numerical solver.

The inversion proceeds in two stages. In the first stage, only Vp is updated, starting from a randomly
initialized SIREN network, while Qp is kept fixed at a homogeneous value. After convergence (1000
iterations with Adam optimizer, using a 0.001 learning rate), the recovered Vp is fixed and used to
generate viscoacoustic simulations in the second stage, which inverts solely for Qp using an
independently initialized SIREN. The use of random initialization for both networks demonstrates
the ability of IFWI to shape a physically meaningful subsurface model without relying on informative
starting points.

After completion of the IFWI stages, the predicted Vp and Qp models are both refined using a short
deterministic inversion phase. We perform 10 iterations on the grid-sampled models, exploiting the
accurate gradients available on the numerical grid. This stage enhances the resolution of
boundaries, sharpens the attenuation anomaly, and adjusts small-scale features that may be
difficult for a low-depth SIREN network to represent.

For comparison, a traditional deterministic viscoacoustic FWI is performed separately, initializing
both Vp and Qp from smoothed versions of the true models. This provides an optimistic baseline
for assessing the improvement introduced by the implicit formulation.

Results

The true Valhall synthetic model used in this study contains a strong low-velocity anomaly
associated with the shallow gas cloud, extending laterally across the central region and producing
significant amplitude dimming in the seismic data. The corresponding Qp anomaly is also spatially
confined to the gas zone, exhibiting a high attenuation zone that dramatically affects wave
propagation. The true models used in this study are illustrated in Figure 1 and serve as a benchmark
for evaluating the inversion results.
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Figure 2 Initial and predicted Vp and Qp models for the Valhall synthetic experiment using the proposed inversion
workflow.

In the first inversion stage, the IFWI successfully reconstructs the overall geometry of the velocity
depression, despite starting from a completely random model. The INR produces a smooth but
geologically consistent representation, accurately capturing the lateral position and vertical extent
of the gas cloud and showing a good agreement with the true Vp structure (see Figure 2).

The second inversion stage focuses on attenuation, using the predicted velocity as input. The
estimated Qp field aligns closely with the true attenuation anomaly (Figure 2). The continuity
enforced implicitly by the SIREN network prevents the formation of spurious oscillatory artefacts
typically encountered in grid-based multiparameter inversions.

Following the IFWI stages, the 10 iterations of a standard deterministic inversion are used to
sharpen the velocity boundaries and to improve the contrast of the attenuation anomaly, adding
finer details to the final predictions of both Vp and Qp.

If we compare these results with those obtained through a deterministic baseline inversion that
starts from smoothed versions of the true models (Figure 3), we can observe that the predicted Vp
model is affected by some artifacts and the low-velocity zone corresponding to the gas cloud is not
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perfectly reproduced. For the attenuation, the predicted Qp models is not able to correctly identify
the high-attenuation regions, producing diffuse attenuation zones in the central part of the model.
Overall, the results obtained with the hybrid approach of IFWI combined with deterministic
inversion closely resemble the target fields shown in Figure 1, confirming that the implicit neural
approach is capable of capturing both kinematic and amplitude-related information, even when
starting from completely random initial models.
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Figure 3 Initial and predicted Vp and Qp models for the Valhall synthetic experiment using a standard deterministic
inversion.

Conclusions

This study demonstrates that implicit neural representations using SIREN networks provide an
effective and robust framework for viscoacoustic FWI in complex geological settings such as the
Valhall gas-cloud model. The continuous and resolution-independent representation reduces
discretization artefacts, enhances inversion stability and the use of a sequential inversion workflow
neglects possible artifacts associated with cross-talk effect between Vp and Qp. Remarkably, even
when starting from random initial models, IFWI successfully recovers both the low-velocity zone and
the localized high-attenuation anomaly characteristic of the shallow gas cloud. The subsequent
deterministic refinement further enhances resolution, compensating for the limited depth of the
neural architecture. When compared to a classical deterministic viscoacoustic FW!I initialized from
smoothed versions of the true models, our proposed approach demonstrates superior
reconstruction quality, sharper boundaries and more stable Qp estimation. Thes results highlight
the potential of implicit viscoacoustic FWI as a powerful and flexible methodology for multi-
parameter imaging in complex, strongly attenuative environments, and provide a promising
direction for its application to field-scale datasets.

Possible future developments include exploring deeper SIREN architectures capable of reproducing
fine-scale details without the need for a subsequent deterministic refinement step or employing a
single joint network to simultaneously invert both Vp and Qp.
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Introduction

Understanding how seismic velocity and intrinsic attenuation jointly influence waveforms is
fundamental for reliable subsurface imaging, especially in environments affected by strong
amplitude distortions and illumination loss. In viscoacoustic full waveform inversion (VFWI),
variations in Vp and Qp often generate similar responses in the data, producing strong parameter
coupling and significant cross-talk (Yong et al. 2024). In particular, Qp is notoriously difficult to invert
because its imprint on seismic data can be partially indistinguishable from that of Vp, leading to
parameter leakage, instability, and non-uniqueness.

In order to investigate this behaviour in a controlled environment, we analyse a simple but
representative viscoacoustic model and study the mutual influence between Vp and Qp. The
background velocity increases linearly with depth and includes a high-velocity anomaly located on
the left side of the model, while attenuation is described by a homogeneous background and a
localized low-Qp anomaly situated on the right. This spatial separation allows us to observe how the
sensitivity of the wavefield responds to each parameter independently, avoiding artificial
correlation induced by overlapping anomalies.

To better understand the undelying causes of parameter coupling, we complement the inversion
with a controlled sensitivity analysis based on a simplified model parameterization, restricting the
problem to only four scalar parameters—the background velocity, the velocity anomaly, the
background attenuation and the attenuation anomaly. This enables explicit computation of the
Jacobian, Hessian, covariance and correlation matrices.

Results

We consider a simple 2D model where the background Vp increases linearly with depth, and a high-
velocity anomaly is embedded in the left portion of the domain. For Qp, the background is
homogeneous while a localized attenuation anomaly is placed on the right side of the model. This
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configuration ensures that any interaction between the two physical parameters arises exclusively
from wavefield physics rather than geometric overlap.

The inversion workflow follows a two-stage process: in the first stage the Vp is updated while Qp is
kept fixed at a homogeneous value. Once the recovered velocity stabilizes, it is fixed, and the second
stage targets Qp alone. Both stages use the same numerical framework, based on forward and
adjoint simulations performed with Devito under a Standard Linear Solid (SLS) attenuation model
(Louboutin et al. 2019). This entire two-stage procedure is repeated for three times, allowing a
better reconstruction of both the Vp and Qp anomalies.

From the results shown in Figure 1, we can observe how the predicted velocity field accurately
reproduces the velocity anomaly in the correct position while the Qp anomaly has no influence in
the Vp prediction. For the Qp prediction instead, the inversion is able to accurately reproduce the
Qp anomaly, but some artifacts arise in correspondence of the Vp anomaly.
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Figure 1. True, initial and predicted Vp and Qp models.

If we have a look to the gradient maps related to Vp and Qp (Figure 2), we can observe how the Vp
anomaly is visible in the map associated to the Qp at the final iteration of the inversion, confirming
the cross-talk between Vp and Qp that affects the FWI predictions.

To better investigate the behavior observed in the sequential FWI, a complementary sensitivity
analysis is carried out. The model is parameterized by four different variables: background Vp, Vp
anomaly, background Qp and Qp anomaly. This reduced framework makes it possible to interpret
the influence of each parameter independently. The Jacobian is then explicitly computed by
introducing small perturbations to each parameter and evaluating the corresponding data misfit
through viscoacoustic simulations. From the Jacobian, the Hessian, covariance and correlations
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matrices are derived, providing a clear interpretation of parameter dependency and uncertainty
distribution.
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Figure 2. Gradient maps associated with Vp and Qp, respectively, extracted at the first and last iteration of the FWI
workflow. The red arrow highlights the Vp anomaly effect visible in the gradient map associated with the Qp.
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This sensitivity analysis reveals strong asymmetry in the way Vp and Qp influence seismic data. The
correlation matrix shown in Figure 3 clarifies the coupling between different model parameters. The
attenuation anomaly exhibits significant correlations with both velocity components, indicating that
attenuation estimates are easily contaminated by velocity mismatches.

The covariance values reveal a striking difference between the resolvability of velocity and
attenuation. The variances associated with background velocity and velocity anomaly are relatively
small (of the order of 1e-7), confirming that velocity is well constrained by the data. In contrast, the
variance associated with the attenuation background reaches approximately le-4 and the
attenuation anomaly shows a variance close to 1, indicating much higher uncertainty. These values
demonstrate that attenuation is fundamentally much more difficult to constrain.

Conclusions

This simplified four-parameter experiment provides a clear and quantitative demonstration of the
inherent crosstalk between velocity and attenuation in viscoacoustic FWI. The sensitivity analysis
provides an intuitive explanation for this behaviour, showing that velocity is strongly constrained
while attenuation is characterized by much larger uncertainty and strong correlation with velocity
variations.

The asymmetric coupling revealed by the correlation and covariance analyses shows that
attenuation cannot be reliably recovered without strong regularization, low-frequency information
or additional prior constraints. These results help explain the instability and noise amplification
commonly observed in practical Qp inversions and underline the need for careful parameterization
and inversion strategies when simultaneously recovering Vp and Qp in viscoacoustic FWI.
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The multi-homogeneous theory applied to the
imaging of potential fields data

L. Bianco, M. Fedi

Universita degli Studi di Napoli "Federico Il

The fields generated by ideal sources are homogeneous functions by a constant integer degree, n,
which is -3, -2, -1 and 0 respectively for spheres, dykes, sills, and contacts.

However, when dealing with geological source distributions and their fields, the homogeneity
equation is not satisfied. Instead, they exhibit "multi-homogeneity," it is to say that degree of
homogeneity is not fixed but is dependent on the distance from the source. Consequently, n often
assumes fractional values and varies locally with observation positions.

From this, we integrate multi-homogeneity theory into the Depth from Extreme Points (DEXP)
method (Fedi, 2007). This imaging technique was defined for the aforementioned class of ‘ideal
sources’, the proposed integration expands the DEXP application to complex sources, without the
need of assuming the ideal sources as representative of the real-world distributions.

The proposed technique is tested on synthetic and real cases. The multi-homogeneous DEXP
exhibits a significantly improved recovery of the source geometry, thus allowing also a conversion
from DEXP image to physical parameter distribution.
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Introduction

The magnetotelluric (MT) method is a passive geophysical prospecting technique that measures the
Earth’s response to the diffusion of natural occurring electromagnetic (EM) fields. To derive the
subsurface resistivity data inversion techniques are commonly used, however these approaches are
ill-posed problems as different resistivity distributions can generate equivalent surface responses.

Previous works have proposed different approaches to tackle the non-linearity of the inverse
problem for MT data. In particular, Calderon Hernandez et al. (2026) developed a method in which
by defining a 1D cumulative resistance model of the subsurface a mapping function £ can be
established between the 1D resistivity model and its corresponding MT data. This mapping
relationship was used to train a neural network 2 that directly transforms MT data into a 1D
resistivity model of the subsurface without requiring a-priori information nor iterative processes.

In this work we explore the physical meaning of the mapping function &, by analyzing its relationship
with the attenuation of the electromagnetic field in a layered medium and by comparing it with the
conventional skin-depth §. Furthermore, to evaluate the quality of the solutions provided by the
mapping network £, we explore the solution space associated with the inversion of 1D synthetic MT
data. This analysis allows us to determine the position of the network’s prediction within the
inversion manifold, highlighting the mapping network £ robustness in addressing the non-
uniqueness of the 1D inversion for MT data.

Method

W simulated MT data, to be referred as "measured data", from a 1D resistivity model, to be referred

III

as “true model” (Figure 1a), using the python routine empymod provided by Werthmiiller (2017).
We then computed a resistance model of the subsurface following the approach depicted by
Calderon Hernandez et al. (2026) defining the resistance model R(z) as

R(z) = — 1)
o S(2)

where S(z) is the longitudinal conductance.
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Using the real component of the wave impedance R (ny(f)) from the data, and the resistance

model, we searched for all the (z, f) pairs for which R (ny(f)) = R(z) (Figure 1b), retrieving the
mapping function E (Figure 1c).
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Figure 1: Proposed layered resistivity model (a). Data and model matching for a given data point (b). Frequency-depth
pairs for all data points and the mapping function E between data and model (c).

We then computed the attenuation of the electromagnetic field (Figure 2) for the model in Figure

1a following the approach proposed by Jones (2006) in which the amplitude of the electromagnetic
field at each depth is defined as

_|IEx@)|Hy(2)]
A (@) = iz 01,0 @)

Furthermore, to evaluate quality of the 1D resistivity models predicted by the mapping network =
within the non-unique MT inverse problem solution space, we conducted a global exploration of the
solution space using a random search approach. An ensemble of 1D resistivity models and their
corresponding MT data were simulated. For each simulated MT data in the ensemble, we computed
the data misfit between the simulated and measured data and compared this distribution with the
misfit obtained from the mapping network &.

where |E, (z)| = /E,E}.

Results

Physical Meaning of the Mapping Function

To show the physical meaning of the mapping function = we plotted it on the electromagnetic
attenuation field shown in Figure 2 (white) and compared it with the conventional skin depth for

MT data (red), defined as
,2
S5 = M. (3)
Ho W

Where p4,,, denotes the apparent resistivity. In addition, we compared the mapping function E with
the true skin depth (blue), defined as the point in which A, (f) = 1/e for each point in depth.
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Figure 2: Attenuation field for the layered resistivity model depicted in Figure 1a. Theoretical skin depth computed by
using eq. (3) in red. Real skin depth in blue. Mapping function Z in white.

The results demonstrate that the mapping function Z follows closely the real skin depth, and that
its behavior can be directly associated to the resistivity properties of the model in Figure 1a. In
particular, the mapping function Z captures a dynamic sensitivity of MT data that depends on the
resistivity structure of the subsurface, this can be attributed to the fact that Z represents a
resistivity-dependent, dynamic investigation depth which cannot be depicted by the conventional
skin-depth.

Validity of the Mapping Network = Results in the Solution Space

To assess quality of the results from the mapping network & within the global solution space, we
randomly generated 5000 different 1D resistivity models. And for each model, we simulated its
corresponding MT data using the forward model empymod and we evaluated the data fitting using
the normalized root-mean Square (nRMS) error of the complex impedance Z, defined as

— l m |Zmeas(fi)_ Zsim(fi)|2
nRMS = \/ M2 el ()

where m is the number of data points, and Z,,,.,s and Zg;,, denote the measured and simulated
complex impedances, respectively. The distribution of misfits obtained from the ensemble of
simulated models was then compared with the misfit associated to the resistivity model predicted
by the mapping network = (red cross) in Figure 3. All compared relative to the misfit of the true
resistivity model (blue diamond).
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Figure 3: Misfit associated to the solution space for 5000 1D resistivity models. The x-asis represent mean logl0-
resistivity of all the layers within one model, the y-axis the logl0-structure index (total arc length of the resistivity
profile), and the z-axis the nRMSE between simulated and measured data (eq. 4). The red cross depicts the results of
the mapping network Z and the blue diamond depicts the true resistivity model.

The validity of the prediction from the mapping network Z, is confirmed by its projection into the
solution space. This result has the lowest misfit between simulated and measured data, and the
properties of the predicted resistivity model are in agreement with those of the true resistivity
model showing the robustness of the mapping network Z.

Conclusions

We investigated the physical meaning of the mapping function = by analyzing its relationship with
electromagnetic field attenuation in a 1D layered Earth. By comparing the mapping function = with
both the conventional skin depth and the true skin depth for MT data we demonstrated that the
mapping function Z closely follows the real skin depth and offers a sound data-driven representation
of the real depth of investigation of 1D MT measurements.

Furthermore, the robustness of the mapping network =, was validated through a global solution
space analysis based on a random ensemble of 1D resistivity models. The resistivity model predicted
by &, is projected into the region of lowest misfit within the solution space, and its properties are in
agreement with the true resistivity model. This result demonstrates that the proposed mapping
network =, not only mitigates the non-uniqueness inherent to 1D MT inversion but also reliably
retrieves physically meaningful models, confirming the effectiveness of the approach developed by
Calderon Hernandez et al. (2026).
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Joint inversion of inductive and galvanic data:
significant resolution improvement honouring
both data types — 3D EM and 2D DCIP
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Abstract
In Signora et al. (2025), we demonstrated that the joint 1D electromagnetic (EM) and 2D DCIP (Direct

Current resistivity and Induced Polarization) inversion achieves a significant improvement in
resolution, as validated by logging data, still honouring both datasets. However, the joint inversion
presents much more structure than the independent inversion. Are we certain that this structure is
fully compatible with 3D modeling? Would it be possible to carry out a joint inversion of EM and
DCIP data also in the presence of strong polarization effects? To answer these challenges, we
developed a 3D-EM and 2D DCIP joint inversion scheme capable of modeling IP in both EM and DCIP
data with the same polarization model, i.e. the maximum phase angle (MPA) reparameterization of
the Cole-Cole model. The key feature of this joint 3D EM/2D DCIP inversion scheme is the decoupling
of inversion and forward meshes, together with the possibility to tailor the 3D EM forward meshes
to the modelled EM systems, with mesh refinements dependent on the size of the EM system
footprint and penetration depth and modelling to the Tx shape. We implemented this new
development on two distinct datasets: one for hydrogeological characterization and the other for
mineral exploration.

| Introduction

Geophysical electromagnetic (EM) and electrical methods play significant roles in hydrogeological
exploration and mineral resource investigations. EM methods can efficiently conduct large-scale
resistivity surveys, such as airborne electromagnetic (AEM) methods. When considering the induced
polarization (IP) effect, the EM methods can also delineate the distribution of shallow subsurface
chargeable anomalies. Electrical methods, such as direct current (DC) resistivity and time domain
induced polarization (TDIP) techniques, employ surface electrode arrays to obtain subsurface
resistivity and polarization information. Although electrical methods exhibit lower survey efficiency
compared to EM techniques, they offer good exploration resolution, making them well-suited for
localized geological investigations. However, both electrical and EM methods suffer from non-
uniqueness in data inversion, meaning multiple distinct subsurface models can fit the measured
data. To mitigate the non-uniqueness issue in inversion, researchers began exploring the use of data
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collected from multiple geophysical methods to derive a robust model capable of simultaneously
fitting diverse datasets. This approach is known as joint inversion.

Joint inversion fundamentally differs from traditional integrated interpretation. Integrated
interpretation merely combines the inversion results of independent methods without leveraging
the synergistic potential of cross-method observational data, leaving its quality dependent on the
interpreter's expertise. In contrast, joint inversion capitalizes on shared physical parameters (e.g.,
resistivity) across different geophysical methods to simultaneously process diverse datasets,
thereby achieving superior inversion resolution compared to individual methods. For electrical and
EM methods, EM techniques generate currents through induction, primarily sensing horizontal
resistivity variation characteristics, while the electrical method measures the vertical-horizontal
geometric mean resistivity by injecting currents directly into the ground. Their complementary
sensitivities to conductors (EM) and resistances (DC), combined with shared resistivity parameters
(both can be extended to model IP effects), make joint inversion particularly valuable.

Most of the existing studies on joint inversion of electrical and EM methods focus on resistivity
parameters, and the modeling physical kernel is mostly based on a 1D layered earth approximation.
In Signora et al. (2025), we show that joint 1D EM and 2D DCIP achieves a significant increase in
resolution, still honouring both datasets. Since the research cases demonstrated by Signora et al.
(2025) involve a weak-to-mild polarization for hydrogeological purposes, it is essential to explore
whether the joint inversion remains applicable under conditions of strong polarization in geological
settings. For these reasons, in this study we present a 2D joint inversion framework combining
three-dimensional (3D) EM and 2D DCIP forward physical kernel to simultaneously recover
resistivity and IP parameters based on the EEMverter platform (Fiandaca et al., 2024).

Il Method and Theory

In our 3D EM numerical simulation approach, we have adopted a primary-secondary field separation
technique. Unlike the traditional total field computation strategy, this method does not require
dense meshing near the source and has a smaller footprint area, conducive to the substantial
conservation of computational resources. Applying Dirichlet boundary conditions, the frequency
domain electromagnetic curl-curl equation is (Chen et al., 2025):

Jo(VXN-VxE* —iwu(o® + oP)N-ES)dV = [ (iwpo*N-EP)dV, (1)
Eilq = 0.
The 2D galvanic DC and full-decay IP modelling are also calculated in the frequency domain,
neglecting electromagnetic induction. For a point source with (zero-phase) current I, this problem
can be defined by Poisson’s equation and solved through Fourier transformation in the strike (y)
direction:

%(J*aa;f:) + %(a*aa;f) —V2p*a* = —16(x)6(2) (2)
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where ¢* and o” are the Fourier-transformed complex potential and the complex conductivity
respectively, A is the Fourier transformation variable and 6 represents the Dirac delta function. The
differential equation is solved by using the finite element method, applying the Neumann- and
Dirichlet-type boundary conditions. For further details regarding the 2D DCIP modeling,
see Fiandaca et al. (2013). The forward computations for both electrical and EM methods are
performed in the frequency domain, and the time domain solution is obtained by a fast Hankel
transformation.

Il Results

As shown in Figure 1, the study area is in the Ossa-Morena Zone of southern Portugal. The AEM data
from this region exhibits sign reversal phenomena caused by strong IP effects (Fig. 1c). On the
ground, two follow-up DCIP lines were carried out in the Odivelas area, with the ABEM Terrameter
LS 2 system in full-waveform acquisition.

(a) Survey map (b) Geology

575400.000

000'00¥5Z2¢

AEM survey [ing o=~ <
Vot

- Diorite and mesocratic rocks s.1.

= Leucogabbro Anorthosite

- Olivine Leucogabbro 11 Anorthosite

- Olivine Leucogabbro I Massive Oxides Cumulate
- Olivine Leucogabbro 111 Anorthosite

I otivine Gabbro
== AEM & DCIP line

575400.000 = Taults

0000095220

(c) AEM Line A

=P 10

10t %

0.1 0.1 .

0.01 e,
0.01

0.001 %

|(dB/dt)ANIR)| (V/AnT) (x1e-12)

0.001

|(dB/dt)/(NI)| (v/Am®)(xLe-12)

0.0001

—=— Positive data

o

.0001

—e— Negative data
10~ Forward data

10~ 0.0001 0.001 0.01 0.1

Decay time (s)
Relative distance (m}

Fig. 1. DCIP and AEM survey line distribution and acquisition data. (a) Map of the Beja survey line; (b) Reference geology;
(c) Example of AEM data with IP effects.
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Fig. 2. Comparison of independent inversion results for the Beja survey lines. (a) 2D DCIP independent inversion for Line
A; (b) 2D DCIP independent inversion for Line B; (c) AEM independent inversion for Line A (1D EM kernel); (d) AEM
independent inversion for Line B (1D EM kernel). From top to bottom: the resistivity, the chargeability phase, the phase
relaxation time and the frequency exponent.

Figure 2 presents the results of independent inversion based on the MPA parameterization model.
It is evident that both DCIP and AEM exhibit significant correlations in the IP parameters inversion
results along two adjacent survey lines. The DCIP resistivity results, with a DOI of approximately 200
meters, reveal a distribution pattern in the shallow subsurface characterized by an initial low-
resistivity layer followed by a high-resistivity zone, corresponding to the soil layer and gabbro layer,
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respectively. The DCIP chargeability phase indicates a strong polarization anomaly in the region from
50 to 150 meters below the surface, predominantly concentrated on the eastern side of the survey
line. The AEM resistivity results (Figs. 2c & 2d), with a higher DOI of about 450 meters, demonstrate
that the high-resistivity layer extends both towards the shallow surface and deeper sections on the
eastern side of the survey line, forming a low-resistivity zone in the middle, which is hypothesized
to be associated with an oxide accumulation layer. The resolution of the AEM chargeability phase is
inferior to that of DCIP, only showing a strongly polarized parameter layer in the shallow subsurface,
with the thickness and intensity of the polarized layer decreasing from the western to the eastern
side.
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Fig. 3. Comparison of 2D joint E&EM inversion results for the Beja survey lines. (a) Joint inversion results for Line A; (b)
Joint inversion results for Line B. From top to bottom: the resistivity, the chargeability phase, the phase relaxation time
and the frequency exponent.

Figure 3 shows the 2D joint inversion results of the two survey lines. Within the DOI range, the joint
inversion demonstrates superior spatial resolution, with more detailed delineation of resistivity and
IP parameters in the shallow subsurface intrusive rock layer. Additionally, the chargeability phase
from the joint inversion reveals that the subsurface strongly polarized zone gradually extends
deeper from survey Line-A to survey Line-B. In terms of phase relaxation time, the joint inversion
reveals that the effective DOI is primarily concentrated from the central to the eastern part of the
survey lines. It consistently highlights the characteristic of coarse-grained mineralized zones being
semi-enclosed by fine-grained media, which may be related to intrusive rock layers. Regarding the
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frequency exponent, Survey Line A exhibits more localized band-like strong variations, suggesting
the presence of multiple types of mineralized zones.

IV Conclusions

In this work, we presented a novel inversion scheme for the joint inversion of electrical and
electromagnetic (E&EM) datasets with modelling of induced polarization and 3D EM kernel. The
results from the mineral exploration case study indicate that the joint inversion of E&EM data is also
applicable under geological conditions characterized by strong polarization parameters. More
importantly, compared with independent inversion models, the E&EM joint inversion model is not
merely a hybrid of individual results but rather a solution that significantly enhances subsurface
resolution. This improvement stems from the complementary spatial sensitivities of DCIP and EM
methods.
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A synthetic study of the cosmic ray neutron
sensing detector response to heterogeneous
soils and moisture content distribution
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The accurate quantification of subsurface volumetric water content (VWC) remains a central
challenge in hydrogeophysics, carrying direct implications for fields as diverse as precision
agriculture, water resource management, and the forecasting of natural hazards such as flash floods
and landslides. Cosmic Ray Neutron Sensing (CRNS) offers a non-invasive, field-scale approach that
effectively bridges the significant resolution gap between highly localized point sensors and coarse-
scale remote sensing. By monitoring the above-ground flux of low-energy cosmic ray neutrons, a
signal inversely correlated with the total environmental hydrogen pool, CRNS integrates VWC over
a representative elementary volume typically spanning tens of hectares. However, despite its
operational elegance, the rigorous processing and reliable interpretation of the CRNS signal,
particularly in complex, heterogeneous landscapes, necessitate methodological refinement. The
fundamental ambiguity in interpretation arises from the complex spatial variability of soil moisture
and lithology within the sensor’s footprint, combined with the inherently nonlinear relationship
between neutron count rate and VWC. This nonlinearity is known to result in a disproportionately
stronger influence from drier soil regions, but the extent and modulation of this effect under
realistic, spatially complex heterogeneity demand quantitative investigation.

This work presents a comprehensive, purely synthetic study designed to rigorously investigate the
response of the CRNS detector system across a range of heterogeneous subsurface configurations.
The overarching objective is to significantly advance the CRNS data processing and interpretation
workflow by demonstrating the critical value of explicitly incorporating prior information derived
from complementary geophysical characterization. Synthetic datasets were generated using the
URANOS (Ultra Rapid Neutron-Only Simulation) Monte Carlo neutron transport code, which
accurately simulates the complex neutron pathways through the atmosphere and the spatially
variable subsurface. The methodology adopted an integrated approach, utilizing prior geophysical
characterization, specifically Electrical Resistivity Tomography (ERT) and Electromagnetic Induction
(EMI) inversion results, from the well-studied Borgo Grignanello (Sl) field site in Italy. This
characterization informed the creation of a realistic ground model featuring two main lithological
units with distinct porosity and VWC ranges (Fig 1 bottom). The simulation suite (Fig. 1) included
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two reference homogeneous cases, an idealized symmetric two-region domain, and both the
realistic and an inverted spatial configuration of the geophysical model of the site, enabling the
isolation and quantification of the influence of the CRNS detector's non-uniform spatial weighting
function.

» CRNS detector

4821280N

Soil samples

Rl ERT lines

Figure 1 Top Left: Example of homogeneous ground model as a png file image used in URANOS. Top Right: Representation of the idealized

symmetric model. Bottom Left: Simplified map of the site heterogeneity of Borgo Grignanello. Bottom Right: Geophysical

characterization setup and EMI map of the Borgo Grignanello site
Neutron count rates obtained from URANOS were then converted into VWC time series using the
open-source CoRNy software and the state-of-the-art Universal Transport Solution (UTS) forward
model, ensuring a robust and physically consistent conversion across all simulated scenarios. The
analysis of the resulting CRNS signals yielded crucial quantitative insights, confirming the
hypothesis: for the heterogeneous configuration explicitly mimicking the complex conditions at
Borgo Grignanello, the converted VWC derived from the CRNS signal was found to align remarkably
(with a deviation of 1% ) closely with the VWC value of the drier soil portion within the domain. This
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result provides strong, site-specific synthetic confirmation of the predicted dry-region dominance
effect. However, the study demonstrated that this relationship is not a universal constant but is
critically modulated by the degree of non-homogeneity in VWC values, and the geometrical
distribution of the heterogeneity: the precise position of the CRNS detector relative to the wet/dry
interfaces, highlighting the complex, non-linear role of the detector’s spatial weighting function.

The most critical outcome of this investigation lies in its methodological and practical utility for the
hydrogeophysics community. The results unequivocally underscore and highlight the critical
necessity of obtaining and integrating independent prior knowledge of subsurface heterogeneity
for any robust and data-driven interpretation of CRNS time series. Since a simplistic interpretation
of the CRNS signal as an unweighted spatial average can lead to significant errors, the fundamental
utility of this research is the demonstration that the integration of CRNS with complementary
geophysical methods, such as ERT and EMI for lithological and moisture-proxy mapping, is a
necessary prerequisite for achieving a more conscious and reliable interpretation of the CRNS
dataset. This multidisciplinary workflow enables the construction of a structurally and spatially
informed conceptual model that, when incorporated into the CRNS data processing via tools like
URANOS, moves the interpretation beyond a single, ambiguous VWC value toward a more nuanced
and accurate assessment of the state of the heterogeneous soil moisture field. This integrated
approach offers an immediate pathway toward reducing uncertainty in field-scale soil moisture
assessments, supporting more efficient resource management, and enhancing the reliability of
environmental monitoring in complex natural settings.
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EEMstudio & EEMverter LITE

EEMstudio & EEMverter LITE are a Graphical User Interface (GUI) and Modelling Kernel for
processing and modelling of Electrical (E) and Electromagnetic (EM) data distributed starting from
November 2025 with Opensource (EEMstudio) and Freeware (EEMverter) licenses by the EEM Team
Spin-Off company (www.the-eem-team.it), a spin-off of the University of Milano.

EEMverter (Fiandaca et al., 2024) has born with the intention of handling natively joint inversion of
different data types (e.g. Chen et al., 2026 and Fiandaca et al., 2025 for 2D galvanic and 3D EM joint
inversion; Signora et al., 2025b for 2D galvanic and 1D EM joint inversion), time-lapse inversion (e.g.
Signora et al., 2025 for Airborne EM data; Ciraula et al., 2025 for galvanic data), induced polarization
and all dimensionalities (1D,2D & 3D) in the forward response (e.g. Chen at al., 2025 for 3D Airborne
EM modelling with IP (AIP); Dauti et al. 2026 and Dauti et al. 2025 for 1D AIP modelling; Ciraula et
al. 2025 and Romhild et al., 2024 for galvanic full-decay IP modelling).

EEMverter key features are:

e Definition of distinct meshes for model parameter definition, forward computation and
constraint definition (Madsen et al., 2020; Zhang et al., 2022) in vtk format, for being easily
visualizable in Paraview (Ahrens et al., 2005).

e Parametric definition of electrical properties, such that the (complex) electrical conductivity
is computed through functions, also integrating petrophysical relations (e.g. Rdmhild et al.,
2024 for direct inversion of DCIP data in terms of hydraulic conductivity).

e Flexible definition of the inversion objective function, such as the data misfit, roughness
misfit & prior misfit can be computed with the use of different norms, such as L1, L2,
generalized Minimum (Gradient) Support (Fiandaca et al., 2015).

e |terative inversion splitable in several inversion cycles, where inversion model and
parameters, data and constraints are selected for producing comprehensive results.


http://www.the-eem-team.it/
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EEMstudio (Sullivan et al., 2024) is a versatile QGIS plugin designed for processing, modelling, and
inverting electrical and electromagnetic data.

EEMstudio key Features are:

e QGIS integration for intuitive geospatial analysis

e Specialized processing tools for electric and electromagnetic data in time domain
e Advanced modelling and inversion, powered by the EEMverter kernel

e Comprehensive visualization tools for geophysical data and results

e Open-source flexibility allowing community contributions and custom enhancements

Supported data types and formats

EEMstudio and EEMverter handle galvanic data with induced polarization, both in full-decay and
integral chargeability, and TEM inductive data, with single soundings and ground-based acquisitions
in continuous mode. EEMstudio features a built-in file converter, making it easy to convert data to
the file format used in EEMstudio and EEMverter. The converters available in the LITE version are:

e Galvanic data — ABEM Terrameter .txt format (file exported directly from the Terrameter LS
Toolbox); IRIS .bin format (native binary file format exported from the IRIS instruments);
Res2DInv .dat format (resistivity-only and integral chargeability both supported with
standard format); Generic .tx2 format (output of the full waveform processing tools
developed at Aarhus/Lund University, Olsson et al., 2016);

e Inductive data — Loupe .dat format (Native export format from the Loupe instrument); tTEM
xyz/.lin format (file exported with TEM Data Manager software distributed by
TEMcompany); TEM2Go .xyz/.lin format (file exported with TEM Data Manager software
distributed by TEMcompany); sTEM .usf format (file exported with TEM Data Manager
software distributed by TEMcompany); single sounding .usf format. with stacked data (e.g.
SPIA export) and with raw data with multiple sweeps (e.g. WalkTEM export).

Inthe official release, both galvanic and inductive demo files are distributed, to allow the users easily

accessible training datasets.

Available modelling of E & EM data in LITE versions

EEMstudio and EEMverter LITE allows several options for modelling of Direct Current (DC) and time-
domain IP galvanic data and transient EM (TEM) data, both for single datasets and in time-lapse
inversion.

Available galvanic modelling:

e Full-decay IP modelling, taking into account the current waveform and the system transfer
function following Fiandaca et al. (2013), for 50% and 100% duty cycles (Olsson et al., 2025);
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e Integral chargeability modelling, always considering the current waveform and the system
transfer function for quantitative interpretation (Olsson et al., 2019).

Similarly to Fiandaca et al. (2013), the galvanic forward/jacobian computations are carried out in
frequency domain, solving Poisson’s equation in 2D with the finite element method, and time-
transformed in time domain through the Hankel transform. Constant Phase Angle and Cole-Cole
modelling are allowed for IP data, also with Maximum Phase Angle (MPA) re-parameterization
(Fiandaca et al., 2018).

On the contrary, EM modelling in the LITE EEMverter version is carried out in 1D, following Effersg
et al. (1999) and Sullivan et al. (2023), and modelling the current waveform with the Fitterman and
Anderson (1987) approach. The available modelling for inductive data in EEMstudio/EEMverter LITE
are:

e Single sounding TEM data, in both X and Z components and support for multiple moments
and modelling of the transmitter shape;

e Ground-based multi-sounding TEM data in continuous acquisition, with both 2D and 3D
inversion meshes with horizontal constraints.

No IP modelling nor airborne modelling Are supported in the LITE versions for inductive data, as well
3D computations.

Figure 1 presents and example of full-decay MPA inversion of galvanic data, while Figure 2 presents
the inversion of tTEM inductive data along the same line.
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Fig. 1 — Direct current and full-decay Induced Polarization (DCIP) spectral inversion of galvanic data (Bubbiano demo file
inverted with EEMverter and distributed with the EEMstudio/EEMverter LITE bundle) in terms of Maximum Phase Angle
(MPA) Cole-Cole re-parameterization. Plots extracted from the Visualization App of EEMstudio. Plot 1: pseudosection
of data. Plot 2: resistivity inversion section. Plot 3: chargeability (maximum phase) inversion section. Plot A: example of
IP data fit (blue markers — data; black lines — forward). Depth of investigation in the inversion sections is shown with
shading.
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Fig. 2 — Inversion of tTEM inductive data of the Bubbiano demo file. Plots extracted from the Visualization App of
EEMstudio. Plot 1: Low Moment data stripe (blue markers —data; black lines — forward). Plot 2: high Moment data stripe
(blue markers — data; black lines — forward). Plot 3: resistivity inversion section. Plot 3: data misfit along the profile. Plot
A: example of TEM soundings and fit (blue markers — data; black lines — forward). Depth of investigation in the inversion
sections is shown with shading.
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Workflows

Fig. 3 presents the workflow in EEMstudio/EEMverter for processing and inversion of data (Inversion
Scheme) and modelling of synthetic data (Forward Scheme).
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Fig. 3 — EEMstudio/EEMverter inversion and forward schemes. Inversion scheme: 1) data load or conversions; 2)

processing of E & EM data, for culling outliers out in the QGIS environment, through the Processing App; 3) data

inversion with Modelling App; 4) visualization of inversion results and data fit; 5) delivery or post-processing for

improving the processing with the help of the inversion results. Forward scheme: 1) selection of data; 2) forward

modelling through Modelling App; 3) visualization of modelling results through Visualization App; 4) inversion of

synthetic data.
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Conclusions

We presented EEMstudio and EEMverter LITE, a novel processing and modelling environment for
electrical and electromagnetic data with focus on induced polarization distributed with Opensource
(EEMstudio) and Freeware (EEMverter) licenses. The LITE version of the software allows to process
and model: 1) DC and integral chargeability/full-decay IP data in 2D; 2) TEM data in stationary and
continuous acquisition modes, such as tTEM, Tem2Go, sTEM and Loupe; 3) time-lapse data, both
galvanic and inductive. We believe that EEMstudio and EEMverter LITE, with their common
processing and modelling environment for galvanic and inductive data integrated in QGIS, will
advance the usability of Electrical and Environmental methods for both researchers and
practitioners.
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Neural Representation: Application to Field
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Introduction
One of the most powerful tools in seismic methods for subsurface imaging is represented by Full

Waveform Inversion (FWI; Virieux and Operto, 2009). It consists of an optimization problem in which
the difference between observed and modelled seismogram is iteratively minimized to estimate the
velocity distribution of the investigated subsurface. The idea behind FWI is to employ the entire
information content of the seismic data, considering both amplitude and phase. This leads to
potential for high-resolution imaging, but it comes with its own challenges and limitations, due to
the strong non-linearity and the ill-posedness of this inverse problem. Main issues when applying
FWI are represented by the cycle-skipping and the reliance on the starting model. Indeed, a good
initial model is crucial for the success of the approach, avoiding the optimization to get stuck in local
minima of the objective function. Common strategies to cope with these challenges include the use
of alternative misfit functions, enhancement of low frequencies in the data, the use of global
optimization approaches or casting the inversion in a probabilistic framework to better explore the
solution space.

In this work we use a machine learning approach, the Implicit Neural Representation (INR), to solve
the FWI. We build a continuous representation of the velocity model, instead of a standard grid-
based one, through the parameters of a simple Multi Layer Perceptron (MLP) and we optimize for
them. Sun et al. (2023) demonstrated the effectiveness of this approach in seismic FWI and that it
reduces the dependency on the initial model, being able to converge even when starting from a
random initialization. Therefore, implicit representations can be regarded as an alternative
reparameterization, able to preserve fine details and to reduce the computational complexity of a
grid-based inversion. Its effectiveness partially depends on the frequency bias property of deep-
learning optimization, namely the ability to learn and update from low to high frequency
components.

We present here an application of INR FWI to field data from the CROP project, a large-scale Italian
deep-crustal exploration program, deployed in the ‘80s and ‘90s. In particular, we consider a data
extracted from the CROP-18A 2D seismic line dataset, acquired in southern Tuscany across the
Larderello geothermal area to investigate the relationship between deep crustal structures and
geothermal activity (Bertelli et al., 2003; Scrocca et al., 2003). Previous studies on the same seismic
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line (de Franco et al., 2019; Tognarelli et al., 2020) can provide useful information to validate our
results.

Methods
Unlike purely data-driven models, which often struggles to generalize beyond their training set, FWI

is governed by physical equations describing wave propagation, ensuring predictive consistency and
interpretability. This connection suggests that combining deep learning with the underlying physics
of FWI can lead to more robust and generalizable inversion framework (Sun et al., 2023). Most of
the deep-learning approaches to FWI inherit its traditional challenges, especially the strong reliance
on initial model.

In the context of shape representation, coordinate-based Deep Neural Network are able to learn
continuous functions (Sitzmann et al., 2020). Once trained, such networks can act as implicit
representations of objects or scenes, enabling high-quality image or 3D surface reconstruction from
the input coordinates. As explained in Sun et al. (2023), Deep Neural Representation models a
continuous function that maps input coordinates to features of interest. After training, the network
approximates the continuous function yielding a smooth and memory efficient representation.
Compared to grid-based discretization, the INR stores information in a continuous form, preserving
fine details without dependence on spatial resolution.

When applied to seismic inversion, INR can represent subsurface physical parameters m(x) within
the constraints imposed by the wave equation. This leads to INR FWI, where the forward model F
satisfies

RF(m,s,x,t) —d =0

with R denoting the matrix of receiver layouts, s the source, X the spatial coordinates, t the time
and d the observed data. Replacing the model parameters m with the neural network Ng(x), we
obtain the formulation for the optimization problem of INR FWI:

argmin||RF (N (%), 5, %, t) — d||?
c

with the network implicitly representing the velocity model.

We implement INR by considering a MLP, i.e. a network made of sequential layers of interconnected
neurons, each performing a weighted sum of its inputs, followed by a nonlinear activation function.

The output al.(l) of the neuron i in layer [ is computed as:
l D (-1 l
al() :f(Wi()alg )+bi())
where Wi(l) and bi(l) are the weight and the bias associated to the considered neuron and f
represents the activation function.

To effectively capture high-frequency and spatially complex variations in the subsurface velocities,
we adopt a sinusoidal representation network (SIREN), proposed by Sitzmann et al. (2020). This type
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of INR employs periodic activation functions and, compared to other types of activations, can
represent fine details and high-order derivatives more accurately. Thus, the output of a neuron
becomes

ai(l) = sin(onVi(l)agl_l) + bi(l))

with w, representing a tunable parameter which affects the frequency that the network is able to
capture.

To start the inversion from a given initial model, we need to train the network to represent it. Given
a grid of spatial coordinates as input and the corresponding values of the velocity field as output,
the training adapts the network parameters by minimizing the difference between ground truth and
predicted velocities. We do not train the network, but we randomly initialize the weights, following
what suggested in Sitzmann et al. (2020) and Sun et al. (2023). To do so, we randomly draw weights
so that

WO ~U(—/6/n,,/6/n)

with U representing a uniform distribution and n the number of input features fed into the layer.
This ensures that the input of each sinusoidal activation function is normally distributed with unitary
standard deviation (Sitzmann et al. (2020)).

Results
The dataset considered in this work consists of 10 shots (explosive source) recorded by 192

geophones, deployed in an asymmetric split spread configuration, characterized by a maximum
offset ranging between 6 km and 7.7 km. We considered the first 3 s of the recorded signal, with a
sampling interval of 4 ms.

To compute the forward modelling, we discretize the domain in a grid with nz=42 nodes on the
vertical and nx=1565 on the horizontal direction, respectively. The grid spacing is 30 m in both
directions, thus the considered domain is about 1.2 km deep and extends horizontally for about 47
km. In our modelling, we did not include topography, thus we considered a datum at 200 m above
sea level to refer the data, and we applied the static corrections for sources and receivers available
in the dataset. The source signature has been estimated by selecting short offset traces, flattening
the first arrival and stacking them to obtain a mean wavelet. The forward modelling code is
Deepwave (Richardson, 2022), which employs finite-difference method to numerically solve the
wave equation and automatic differentiation to compute gradients.

To prepare the data for the application of FWI and to enhance refracted and diving waves, on which
we focus in our study, we applied a simple pre-processing consisting in a low-pass filter up to 10 Hz,
top and bottom muting to select only the portion of seismogram of our interest and a trace-by-trace
normalization. Fig.1(a) and Fig.1(b) show one of the considered shot gathers before and after the
pre-processing, respectively. Instead, Fig.1(c) shows the position along the line of sources and
receivers for the 10 shots considered, with the extension of the inverted model.
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To implement the INR FWI, we consider a MLP with two hidden layers of 32 neurons each, for a total
number of 2241 network parameters and sinusoidal activation functions. Note that these are the
unknowns of the inversion and by representing the model through the MLP, the number of
parameters is substantially reduced with respect to a standard grid-based inversion, which would
involve nx-nz=65730 unknowns for the same spatial discretization used in the forward modelling.
The frequency w, for the SIREN is set to 10. For the optimization, we run the FWI for 6000 iterations,
using the Adam optimizer. The selection of architecture and tunable hyperparameters comes from
experience made on synthetic tests and trial and error procedure to understand the configuration

that works better in our field data application. The inversion procedure took about 6 hours on a
server equipped with Intel® Xeon® Silver 4114 CPU @2.20 GHz. This time is considerably reduced
when using GPUs.
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Fig. 1 — One shot gather before (a) and after (b) the pre-processing steps. (c) Positions along the horizontal axis of the
sources (in red) and the receivers (in green) for the different shots, with the extension of the inverted model, expressed
both in meters and in grid points.

To test the robustness of the INR FWI against initialization, we decided to run the inversion starting
from a random model, obtained with a random initialization of the network weights and biases as
previously discussed. The random initial model is represented in Fig.2(a), whilst Fig.2(b) shows the
model predicted after the inversion. Focusing on the most illuminated portion, thus excluding the
less reliable lateral and bottom edges of the domain, we note the left portion of the model shows
high velocities at shallow depth or at surface, whilst the right side is characterized by lower
velocities, pertaining to a sedimentary basin. This prediction is consistent with the results shown in
Tognarelli et al. (2020). As stated in that study, the alternation of higher and lower velocities at
surface level corresponds to the sequence of the outcropping hard and soft formations. Velocities
of 5-6 km/s can be associated to metamorphic formations, whilst the increment up to about 7 km/s
could be due to the presence of intrusive bodies (Tognarelli et al., 2020).

To better understand the reliability of the result obtained with INR FWI, we check the data fitting.
Fig.3(a) shows the comparison of the observed data (black) and the initial data (red). The observed
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data is then compared for the same shot gather to the data computed on the predicted model
(Fig.3(b)). We note an improvement in the fitting of the first events, with the INR FWI that was able
to partially solve the highly cycle-skipped initial data. This is supported by the close-ups on some
traces shown in Fig.3(c). The phase of the first three or four observed cycles is well reproduced in
the prediction, with some mismatch in the amplitudes, even when the initial data was completely
missing those events.
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Fig. 2 — The random starting model (a) and the model predicted by INR FWI (b).

(a) Observed data vs Initial data
0.0 !

Y
| Cc
j ',‘r}» ii-‘!,’F!;LL i ( ) Offset: 7679 m

01 /\
\! )vz\ AN
V Fv

Time (s)

Amplitude
B

Offset: 4464 m

01 /\
30 £ o0 ——4; A
-4000 -2000 0 2000 4000 6000 VA \/ v
Offset [m]) =0.1
5 10 15

Amplitude

(b) Observed data vs Predicted data -02
Q)

») hh‘!'..’ \

.
Time [s]

Offset: 6247 m

01
\ﬂ ?\Vx [\\/\ /\
I Ay
V
1.00 125 1.50 175 2.00 225 2.50 275 3.00
Time [s)

Amplitude
s

—— Observed Initial ~ —— Predicted

3.0
~4000 -2000 [ 2000 4000 6000
Offset [m]

Fig. 3—Comparison of observed (black) and data computed (red) on the starting model (a) and on the final FWI predicted
model (b). Close-ups of some traces (c).

Conclusions
In this study we tested the INR FWI proposed in Sitzmann et al. (2020) and Sun et al. (2023) on field

data from a geothermal area. The predicted model is consistent with the results reported in
Tognarelli et al. (2020) on the same CROP-18A seismic line.

The INR FWI offers a promising alternative to standard FWI implementations. The model
representation through the network parameters and the frequency bias property lead to inherent
regularization of the solution and to alleviate the necessity of an informative and accurate initial
model. Indeed, the method, as shown in this study, is able to converge to reliable and meaningful
solutions even when starting from a random initial guess.

Further improvements could come from extending the analysed dataset by including more shots in
the inversion and taking into account the topography in the modelling.
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Introduction

Electrical resistivity tomography (ERT) is a widely applied geophysical imaging technique for
resolving subsurface resistivity variations, with applications ranging from hydrogeology and
environmental studies to engineering and geohazard assessment. Conventional ERT inversion
strategies are typically deterministic and rely on smoothness-constrained formulations, which
provide stable solutions and rapid convergence but offer limited insight into model uncertainty. This
limitation is particularly relevant in complex geological environments, where non-uniqueness and
uneven data sensitivity may strongly affect interpretation.

Both deterministic and probabilistic inversion methods critically depend on the accurate and
efficient computation of gradients of the objective function with respect to model parameters.
Classical approaches for gradient computation include finite-difference (FD) approximations and
Jacobian—vector (JV) or adjoint-based methods. Although Jacobian—vector products can in principle
be extended to alternative parameterisations through the chain rule, doing so requires manual
derivation and implementation of dense mappings, making the approach considerably less flexible
and efficient than automatic differentiation, which supports such transformations natively.

Recent advances in machine learning have promoted the widespread use of automatic
differentiation (AD) as a general and exact tool for gradient computation. AD enables machine-
precision derivatives through arbitrary sequences of differentiable operations, eliminating the need
for explicit Jacobian construction or adjoint derivations. Despite its success in seismic and other
geophysical inverse problems, the application of AD to ERT inversion—particularly in probabilistic
frameworks and reduced-order parameterisations—remains largely unexplored. In this work, we
introduce ADERT, a fully differentiable framework for electrical resistivity tomography inversion
based on automatic differentiation. ADERT reimplements the ERT forward modelling engine within
the PyTorch ecosystem, allowing gradients to be computed seamlessly through the entire modelling
pipeline. We validate the accuracy and efficiency of AD-based gradients against classical FD and JV
approaches, and we demonstrate the flexibility of the framework through deterministic and
probabilistic inversions. Special emphasis is placed on a field-data application, where ADERT enables
efficient uncertainty quantification using a probabilistic inversion in a compressed model space.



Session 3.3 GNGTS 2026

Methods

ADERT is built around a forward modelling engine that reproduces the finite-volume discretisation
commonly adopted in ERT but implemented entirely using PyTorch tensors. This design ensures that
all computational steps—including conductivity transformation, system matrix assembly, solution
of the Poisson equation, and data projection—are embedded within a differentiable computational
graph. As a result, simulated data are fully differentiable with respect to the resistivity model,
enabling exact gradient computation via reverse-mode automatic differentiation. From a theoretical
perspective, the forward operator F can be expressed as a composition of elementary differentiable
operations acting on the model parameters. Automatic differentiation evaluates the total derivative
of F with respect to the model m by recursively applying the chain rule through all intermediate
variables, such that:

0F  0vy 0vg_q 01y
om 0vy,_, 0v,_, om’

This recursive application of the chain rule propagates derivatives from m through all intermediate
computations v; = fi(vj,vk, ) In this way, ADERT computes exact gradients efficiently and at
machine precision, without requiring manual derivation or explicit Jacobian storage. The resulting
gradients are both accurate and computationally efficient, thanks to reverse-mode accumulation.
Unlike symbolic or numerical differentiation, automatic differentiation operates directly on the
computational graph, supports dynamic control flow, and avoids approximation errors, making it
particularly well suited for large-scale, differentiable physics-based simulations.

To assess the accuracy of AD-based gradients, we compare them against two benchmark methods:
finite-difference approximations of the Jacobian and the Jacobian—-vector (JV) approach
implemented in the SIimPEG framework. Finite differences provide a straightforward reference but
are computationally expensive and sensitive to perturbation size. The JV method efficiently
computes gradients without storing the full Jacobian, but relies on manually derived sensitivity
expressions tied to the full-domain discretisation. All gradients are evaluated with respect to the
same least-squares objective function to ensure a fair comparison. Beyond deterministic inversion,
ADERT supports probabilistic inference through gradient-based variational methods. In the
deterministic setting, we solve the ERT inverse problem using a smoothness-constrained
formulation optimized with the L-BFGS-B algorithm, where gradients of the objective function are
computed exactly via automatic differentiation. This approach provides fast convergence and stable
solutions while serving as a reference model for subsequent uncertainty analysis. For probabilistic
inversion, we adopt Annealed Stein Variational Gradient Descent (A-SVGD), a particle-based
variational inference method that approximates the posterior distribution by iteratively
transporting an ensemble of particles toward regions of high posterior probability (D’Angelo &
Fortuin, 2021; Corrales et al., 2025; Berti et al., 2025). The algorithm incorporates an annealing
schedule that dynamically balances repulsive and attractive interactions between particles, enabling
broad exploration of the model space during early iterations and progressive convergence toward
dominant posterior modes at later stages. Here again, the gradients required by A-SVGD are
efficiently computed via AD, allowing efficient probabilistic inversion even when operating in
reduced or transformed parameter spaces.

To reduce computational cost and mitigate ill-conditioning, we adopt a Discrete Cosine Transform
(DCT) parameterisation of the resistivity model for the probabilistic inversion (Aleardi et al., 2021,
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Rincon et al.,, 2025). Only a subset of low-frequency DCT coefficients is retained, significantly
reducing the number of unknowns. Unlike classical approaches—where gradients in the
compressed domain would require finite differences or manual chain-rule derivations—ADERT
allows gradients to be back-propagated directly from the data to the retained DCT coefficients, with
no additional implementation effort.

Results

Gradient comparison: To evaluate the accuracy and efficiency of the AD-based gradients
implemented in ADERT, we first compare them against FD and JV gradients for a synthetic ERT
benchmark. Figure 1 illustrates the spatial distribution of the gradients computed using the three
approaches for the same reference model and objective function. All gradients exhibit consistent
sensitivity patterns, with the highest amplitudes concentrated beneath the electrode array and
around the target anomaly. Minor discrepancies are limited to shallow regions where the problem
is strongly non-linear. From a computational perspective, the AD-based gradient achieves a
substantial speedup relative to FD approximations and comparable or improved performance with
respect to the JV method, particularly when executed on GPUs. These results demonstrate that
automatic differentiation provides both numerical accuracy and computational efficiency, validating
its use as a reliable alternative to traditional sensitivity-based approaches for ERT inversion.
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Fig. 1 — Spatial distribution of gradients computed using (a) finite differences, (b) the Jacobian—-vector method, and (c)
automatic differentiation for a synthetic resistivity model. The three approaches exhibit consistent sensitivity
patterns, confirming the accuracy of AD-based gradients.

Field data application: Now we show the performance of ADERT using a field dataset acquired along
a 208 m-long profile over a landslide-prone area. The dataset consists of 198 apparent resistivity
measurements collected with 8 m electrode spacing, with the primary objective of delineating
subsurface resistivity contrasts potentially associated with the landslide rupture surface. A
deterministic inversion using AD-based gradients converges rapidly from a homogeneous starting
model and achieves a strong reduction in data misfit. The recovered resistivity image reveals a
shallow conductive layer overlying a more resistive domain at depth, consistent with previous
geological interpretations of the site (see Figure 2).
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Fig. 2 — Results from the deterministic inversion using ADERT. (a) Predicted resistivity model showing near-surface
conductive features and deeper resistive structures. (b) Observed and (c) predicted apparent resistivity
pseudosections. The inversion converged to a final normalised misfit of 5.3 %.

We then perform a probabilistic inversion using the Annealed Stein Variational Gradient Descent (A-
SVGD) algorithm in a DCT-compressed model space. In the following experiment, we assess
inversion performance using 300 particles and 500 iterations. The prior assumptions are illustrated
in Figure 3, where the prior mean corresponds to a homogeneous model of 800 (0.m. Figure 3b
shows two prior realisations drawn from a Gaussian distribution with exponential correlograms
describing horizontal and vertical spatial correlations.
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Fig. 3 — (a) Prior mean resistivity model. (b) Two random prior realisations sampled from the Gaussian covariance
function. (c) Exponential correlograms along the horizontal (x) and vertical (y) directions, used to construct the prior
covariance.

Following Rincdn et al. (2025), who inverted the same field dataset, we retained 10x30 coefficients
along the horizontal (x) and vertical (y) directions, preserving 99 % signal information while
achieving significant compression. Figure 4 shows the posterior mean resistivity model and the
corresponding posterior standard deviation obtained from the final ensemble of particles. The
posterior mean closely resembles the deterministic solution but displays sharper resistivity
contrasts and improved delineation of subsurface features. The posterior standard deviation
highlights zones of increased uncertainty at depth and near the lateral boundaries, where data
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sensitivity is reduced. Uncertainty systematically increases with depth, reaching several hundred
Q-m in poorly constrained regions. By incorporating AD and DCT into the probabilistic approach, the
overall computational cost is reduced by more than 50 % compared to a full-domain AD
implementation, making uncertainty quantification feasible for realistic ERT field datasets.
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Fig. 4 — Results from the probabilistic inversion using ASVGD. (a) Posterior mean resistivity model obtained by
averaging all particles at the final iteration. (b) Posterior standard deviation quantifying the uncertainty of the
estimated resistivities.

Conclusion

This work introduces ADERT, a fully differentiable framework for electrical resistivity tomography
inversion that leverages automatic differentiation to compute exact gradients through the entire
forward modelling pipeline. Gradient comparisons confirm that AD-based derivatives are consistent
with classical finite-difference and Jacobian—vector approaches, while offering superior flexibility
and competitive computational performance. The field-data application demonstrates that ADERT
enables robust deterministic inversion and efficient probabilistic inversion with meaningful
uncertainty quantification. By allowing gradients to be computed directly in compressed parameter
spaces, ADERT overcomes key limitations of traditional sensitivity-based methods and significantly
reduces computational cost. Overall, ADERT provides a powerful and extensible platform for next-
generation ERT inversion, bridging numerical modelling and modern differentiable programming.
Its flexibility makes it well suited for advanced parameterisations, probabilistic inference, and future
extensions to multi-physics and three-dimensional problems.
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Introduction

High-resolution imaging of the near-surface is essential for landslide hazard assessment, aquifer
characterisation, and geotechnical planning. Geophysical methods offer a non-invasive way to
estimate subsurface properties, yet interpretations based on a single parameter are often
ambiguous because inverse problems are non-unique and each method has distinct resolution
limits. Seismic methods are among the most robust tools for recovering mechanical properties.
Near-surface records are typically dominated by high-amplitude surface waves. Conventional
method using Multi-channel Analysis of Surface Waves (MASW) extracts dispersion curves to invert
for 1-D shear-wave speed (vg) profiles. While effective for layered media, MASW is challenged by
strong lateral heterogeneity and topography. Full Waveform Inversion (FWI) provides a more
comprehensive alternative by exploiting the entire seismic wavefield, including scattering and
diffraction effects (Fichtner, 2013). Near-surface elastic FWI has demonstrated high-resolution
recovery of subsurface models, but it remains sensitive to starting models and strongly nonlinear.
Probabilistic and deep-learning approaches have been proposed to mitigate non-uniqueness and
quantify uncertainty in inversion problems (Rincén et al. 2025).

Electrical resistivity tomography (ERT) is widely used due to its low cost and sensitivity to porosity,
saturation, and fluid pathways (Binley et al., 2015). Standard smoothness-regularised inversions
stabilise the ill-posed DC problem but often produce overly smooth anomalies (Loke and Barker,
1996). Recent probabilistic and learning-based strategies improve uncertainty quantification and
reduce regularisation bias (Rincén et al., 2025), yet ERT alone remains limited by diffusive sensitivity
and a large null-space. Given their complementary sensitivities, joint inversion of seismic and
electrical data can reduce ambiguity (Moorkamp, 2017; Rincdn et al., 2020; Zhdanov et al., 2021).
Most near-surface applications combine Seismic Refraction Tomography (SRT) and ERT (Gallardo
and Meju, 2004; Hellman et al., 2017) whereas joint FWI-EM studies remain scarce and are often
restricted to synthetic or very shallow settings (Ma et al., 2025). Here we propose a structurally
coupled joint inversion of surface-wave FWI and ERT using the cross-gradient operator, avoiding
explicit petrophysical assumptions (Wagner et al., 2021). In this paper we present preliminary
synthetic results that demonstrate how FW!I constraints can sharpen diffusive ERT images and
stabilise the recovery of near-surface structure under topography.
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Methods

Joint objective function

We consider two model parameter fields: the shear-wave speed model m.(i.e.,v;) and the
resistivity model m, (or equivalently log-resistivity). The joint inversion is formulated as the
minimisation of a total objective function:

(Dtotal(mc'mp) = Opy(me) + CDERT(mp) + B CDXG(mC;mp)t

where  ®py; and  dgpy  are  least-squares  misfit terms  (including  standard
stabilisation/regularisation), @y is the cross-gradient coupling functional, and S is a weighting
parameter controlling the strength of structural coupling.

Cross-gradient structural coupling

In 2-D, the cross-gradient is defined as the scalar (out-of-plane) component of the cross product
between the spatial gradients of the two parameter fields:

om,0m, 0Jm, 0om,
ox 0z 9z 0dx

t(x,z) = Vm.(x,z) X Vm,(x,z) =

When t(x,z) = 0, the gradients are parallel (or anti-parallel), implying that structural boundaries
(changes in v and resistivity) align spatially even if the parameter values are not linearly correlated.
The coupling term is defined as:

Dxa(mermy) = | It AP do
Q

This formulation avoids site-specific petrophysical assumptions (e.g., Archie-type relations) while
still allowing the two modalities to “communicate” through shared structure.

Forward modelling and gradients

For the seismic component, we model elastic wave propagation and compute gradients using the
adjoint-state method (Tarantola, 1984). In practice, this corresponds to correlating the forward
wavefield with the back-propagated residual (adjoint) wavefield, yielding V,, ®gy;. Seismic wave
propagation and the associated adjoint wavefields are simulated with the spectral-element
framework Salvus (Afanasiev et al., 2019), which enables accurate and efficient solution of the
elastic wave equation on unstructured meshes. For the ERT component, we solve the Poisson
equation and compute sensitivities using the Jacobian—vector machinery available in SimPEG
(Cockett et al., 2015), yielding VmpCDERT. The optimisation is performed with L-BFGS-B, which is

suitable for large parameter spaces and allows bound constraints.
Complementary resolution illustrated by sensitivity kernels
The rationale for coupling is supported by sensitivity kernels (Fig. 1). Dipole—dipole ERT kernels

exhibit broad positive—negative lobes beneath the current and potential dipoles, reflecting the
diffusive nature of current flow. Increasing electrode spacing increases depth of investigation but
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reduces lateral resolution. Conversely, surface-wave Fréchet kernels at a given frequency are
controlled by wavelength: higher frequencies concentrate sensitivity in the shallowest metres, while
lower frequencies illuminate deeper regions. At 30 Hz (Fig. 1b), the minimum resolvable wavelength
is Ain ~13 m, producing a shallow, high-resolution sensitivity zone. The reference models for both
FWI and ERT are taken to be laterally homogeneous and equal to the background value (~ 400 m/s
and ~400 Q.m). Therefore, ERT tends to provide stable, depth-reaching but smooth constraints,
whereas surface-wave FWI provides higher spatial resolution but stronger nonlinearity and
illumination dependence—a natural setting for structural coupling.

(a) dipole-dipole sensitivity kernel, a = 8 m (b) sensitivity kernel @30Hz
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Fig. 1 — Sensitivity kernels illustrating the complementary resolving capacity of electrical and seismic settings: (a)
dipole—dipole ERT sensitivity for an electrode spacing of a = 8 m; (b) surface- FWI Fréchet kernel at 30 Hz, highlighting
the minimum resolvable wavelength (4,,,;,, ~13 m).

Results

We design a synthetic checkerboard experiment where both vg and resistivity share identical 5X5
m?2 anomalies under realistic topography. Seismic data were simulated with 24 geophones spaced
at 4.5 m and 11 vertical-impact sources placed at regular intervals midway between receiver pairs.
ERT data were collected on the same line using a dipole—dipole array spaced at 2 m. Starting from
laterally homogeneous models, we compute the individual misfit gradients and the cross-gradient
field. The FWI gradient (Fig. 2b) shows strong localisation beneath the source-receiver aperture and
follows the acquisition illumination: gradient energy concentrates where surface-wave sensitivity is
highest, and boundaries of the checkerboard are partially expressed, but weaker illumination
regions show reduced recoverability. The ERT gradient (Fig. 2c) is smoother and more diffuse, with
broad lobes and limited ability to reproduce small blocks, consistent with DC physics and
smoothness regularisation. The cross-gradient term (Fig. 2d) is sharply localised within the anomaly
region and suppresses updates outside it, effectively acting as a structural “mask” that promotes
coherent changes where both methods expect boundaries. This confirms that ®y; introduces
information that is not contained in either single-physics gradient alone.

We then compare three inversion strategies on synthetic data: FWI-only, ERT-only, and joint FWI-
ERT with cross-gradient coupling. The FWI-only inversion (Fig. 3a) recovers several anomalies with
relatively sharp boundaries in the best-illuminated zone, but exhibits misplaced or merged blocks
and reduced sensitivity at depth, reflecting limited illumination and nonlinearity. The ERT-only
inversion (Fig. 3b) captures the broad conductive/resistive trend but strongly smooths the 5X5 m?
anomalies, leading to low-contrast, laterally smeared features typical of DC inversion with
smoothness constraints.
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The joint inversion (Fig. 3c—d) yields the most structurally consistent reconstruction: the resistivity
model becomes significantly better focused, with sharper block boundaries and reduced smearing
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Fig. 2 — Synthetic sensitivity analysis for the checkerboard experiment. (a) True checkerboard model used to generate
the seismic and electrical data, consisting of alternating 5 X 5 m? anomalies in both U, and resistivity. (b) Normalised
FWI gradient Vm @y, computed from a single iteration starting from a homogeneous V5 model. (c) Normalised ERT
gradient Vm, @gpr obtained from the DC data. (d) Cross-gradient field t(x, z) highlighting regions where the structural

variations in Vg and resistivity are aligned. The comparison illustrates how the cross-gradient term provides strongly

localised structural information that is not captured by the individual gradients, thereby motivating its use in the joint
inversion framework.

compared with ERT-only, while the recovered v, model remains comparable in resolution to the
FWI-only result. Importantly, anomalies in v5 and resistivity become spatially aligned, indicating that
the cross-gradient successfully enforces shared structural trends without imposing a specific
functional correlation. Quantitatively (as reported in the synthetic benchmark), the joint approach
reduces the resistivity reconstruction error relative to ERT-only while maintaining the seismic
reconstruction quality close to the standalone FWI case, demonstrating that the framework
effectively exploits complementary sensitivities.
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Fig. 3 — Synthetic inversion results for the checkerboard experiment. (a) FWI-only inversion of the shear-wave speed
v,. Several anomaly blocks are partially recovered, but the solution exhibits merged or misplaced structures and
reduced sensitivity at depth, with a relative error of 0.41% with respect to the true model. (b) ERT-only inversion of
the resistivity field. The diffusive nature of DC data and smoothness regularisation smear out the 5X5 m 2 anomalies,
yielding a broad low-contrast region and a relative error of 0.81%. (c) Joint FWI-ERT inversion result for V S obtained
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using the cross-gradient constraint. The anomaly blocks are more sharply resolved and better aligned with the true
geometry. (d) Corresponding joint resistivity model, where the anomalies are significantly better focused and
structurally consistent with the recovered v field. The joint inversion achieves the lowest errors, with relative misfits
of 0.44% for V S and 0.49% for resistivity, demonstrating the benefits of exploiting the complementary sensitivities of
the two methods.

Conclusion

These preliminary synthetic results show that cross-gradient coupling provides an effective,
petrophysics-free mechanism for joint surface-wave FWI-ERT imaging. Sensitivity kernels highlight
the complementary resolving capacity of the two methods: FWI supplies high-resolution,
wavelength-controlled structural information, while ERT contributes stable depth sensitivity but
suffers from smoothing bias. The checkerboard experiments demonstrate that the cross-gradient
term adds focused structural guidance that improves resistivity recovery and promotes consistent
multiphysics interpretation. Ongoing work extends the method to field data from an active landslide
complex.
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Recent advances in inertial sensors have enabled the operational use of strapdown systems for
airborne gravity-field acquisition achieving accuracy levels and spatial resolution suitable for
geodetic and geophysical applications. Instruments such as the IMAR iCORUS-2 gravimeter integrate
high-performance accelerometric sensors, thermal control systems, and GNSS receivers, allowing
continuous acquisition of gravimetric data during flight without traditional stabilized mechanisms.
These capabilities enable dense, methodical airborne gravity surveys that can rapidly span extensive
regions while maintaining mGal-level accuracy (1 mGal = 107> m/s?). The resulting gravity data are
well suited for subsurface modelling and for determining geodetic reference surfaces such as the
geoid.

Within this framework, the Ministero dell’Ambiente e della Sicurezza Energetica (MASE), under the
National Recovery and Resilience Plan, is implementing a national program for the integrated
production of a digital terrain model and a gravity-field model covering the entire Italian territory.
The initiative pursues two main goals: the generation of a new Digital Surface Model and Digital
Terrain Model (DSM, DTM) based on high-resolution LiDAR data (10 points/m?), and the
development of a new, homogeneous, high-resolution airborne gravity dataset together with the
associated geoid model. These outputs constitute an essential element of the National Integrated
Surveillance and Monitoring System (SIM — Sistema Integrato di Monitoraggio).
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Focusing on the airborne gravity surveys, data acquired by the inertial system—specifically
accelerations and angular rates sampled at 400 Hz—were integrated with magnetometer readings
(also at 400 Hz) and GNSS data (sampled at 5 Hz) using a direct estimation method (Johann et al.,
2019). In details, once the aircraft trajectory and attitude are determined via a Kalman filter, the
inertial accelerations are aligned to the vertical component and then combined with accelerations
derived from GNSS to obtain an initial gravity estimate. This preliminary gravity signal is finally
processed with the filtering strategy proposed by Sampietro et al. (2017).

Two test regions, covering the northern Tuscan—Emilian Apennines and the Maremma Laziale areas,
have been acquired and processed. Results show the possibility to derive gravity-field grids
achieving accuracies of about 1 mGal and a spatial resolution better than 2.5 km.
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Local site conditions can markedly influence earthquake ground motion by controlling amplification,
duration, and spatial variability. When shaking is sufficiently strong, near-surface soils may enter a
nonlinear regime in which large strains modify their mechanical properties, decreasing shear
modulus and increasing damping, and may even trigger liquefaction or permanent deformation.

In situ nonlinear site response can be inferred from surface-borehole seismic recordings through
observed frequency changes, such as empirical transfer functions, or velocity changes estimated via
seismic interferometry. However, the magnitude of these variations may be influenced by factors
beyond the intrinsic nonlinear behavior of near-surface materials.

Since nonlinear effects are typically concentrated in shallow layers, it remains unclear how the
response of the entire soil column between surface and borehole sensors contributes to the
observed measurements. In particular, the dependence of inferred velocity changes on the
separation between surface and borehole instruments is not well constrained. Additionally, the
contribution of the downgoing wavefield at borehole sensors may further affect the interpretation
of interferometric results.

To address these questions, we develop a one-dimensional numerical modeling framework to
investigate how seismic interferometry captures velocity variations under different site response
regimes. Both equivalent-linear and fully nonlinear constitutive behaviors are considered to explore
their impact on interferometric observables.

By systematically varying the distance between surface and borehole sensors and the depth
distribution of velocity changes, we aim to clarify the sensitivity, limitations, and interpretability of
interferometry-based velocity monitoring for nonlinear site response studies. This ongoing work



Session 3.3 GNGTS 2026

provides methodological guidance for the analysis and design of surface—borehole seismic
deployments.
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Investigating Borehole TDIP Response in the
Ivrea-Verbano Zone (ICDP-DIVE project):
Linking Chargeability to Mineral Distribution
from SEM and MicroCT Data
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1 Johannes Gutenberg Universitdt Mainz, Mainz, Germany
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As part of a multidisciplinary effort to characterize the deep continental crust, two scientific
boreholes were drilled in the Ivrea Verbano Zone (IVZ, Western Alps, Italy), one of the few
near-complete continental crustal sections exposed on Earth's surface (Pistone et al. 2020).
The boreholes were realized within the Drilling the Ivrea Verbano ZonE (DIVE) project,
supported by the International Continental Scientific Drilling Program (ICDP-5071; Li et al.
2024). Among various in-situ measurements, time-domain induced polarization (TDIP)
surveys were conducted in both wells, acquiring borehole chargeability data with two
electrode spacings (16" and 64").

The boreholes intersect a wide range of lithologies hosting sulfides and oxides, either
disseminated or concentrated along veins and fractures, which represent potential sources of
chargeable response. A set of 11 samples from these boreholes was previously analyzed for
petrological and structural purposes using both scanning electron microscopy (SEM) and
micro-computed tomography (microCT). Starting from these analyses, the study seeks to
understand and, where feasible, quantify the role of specific petrophysical properties in
shaping borehole chargeability.

The following petrophysical characteristics have been evaluated so far: the abundance of
metallic minerals (expressed as volume and area fractions), the perimeter-to-area and
surface-to-volume ratios, the connectivity density, and the preferred orientation of these
conductive phases.
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Preliminary observations suggest that:
e Borehole chargeability is not simply proportional to the abundance of metallic
minerals;
e Asintuitively expected from polarization theory, the number of active surfaces plays a
dominant role over the total volume;
e The preferred orientation of conductive phases appears to be a key factor influencing
the measured chargeability;
e The presence of other mineral phases, such as graphite, may mask or amplify the
response of metallic minerals depending on their structural relationship.
While no deterministic relationship has been identified at this stage, this work outlines a
potential path to improve the interpretation of TDIP data in mineralized systems and to define
complementary yet efficient tools for assessing the economic potential of deep rock
formations in the context of mineral exploration.
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Bayesian inversion of 3D Electrical Resistivity Tomography data
using a subspace reparameterization approach

Alessandro Vinciguerral, Guy Marquis !
I Université de Strasbourg, CNRS, Institute Terre ed Environnement de Strasbourg, France

1 Introduction

Electrical Resistivity tomography (ERT) is a geophysical method widely used in near-surface and
mining exploration. The associated inverse problem is ill-conditioned, with the number of
unknowns exceeding the number of data points, and is nonlinear, which leads to non-uniqueness
of the solution. These issues become more severe in the case of 3D inversion, where the number
of uknowns increases dramatically due to the three-dimensional discretization of the half-space.
For these reasons can be relevant to evaluate the reliability of the solution through the estimation
of the associated uncertainty. In order to estimate the uncertainty, an efficient ensemble-based
algorithm which is feasible for 3D inversion. The Ensemble-based algorithms, and in particular the
Ensemble Smoother Multiple Data Assimilation by Emerick and Reynolds 2013, has been
succesfully applied by Vinciguerra et al., 2024 and Vinciguerra et al., 2025 in near surface and
mining exploration ERT data inversion to approximate the posterior probability density function
(pdf) associated with the 2D inverse problem solution. Usually, in case of 3D inversion, the number
of parameters increases exponentially with the dimension of the model, giving rise to time
consuming inversion, and increment of the required memory (Loke et al., 2022). Consequently,
Bayesian inversion is rarely used for full 3D problems due to the huge computational burden
needed. To address these issues, reparameterization strategies can be employed, such as the
Discrete Cosine transform and the Wavelet transform (Loke et al., 2022), which reduces the
number of model parameters and, consequently, the computational cost and required memory.
However, because those transformations are lossy, they lead to a loss of spatial resolution,
particularly when the model space is significantly reduced. For this reason, in this work we
propose an alternative strategy to reduce the model space and make the Bayesian inversion
feasible for the 3D inversion. Specifically, we employ a subspace ensemble-based algorithm
developed by Raanes et al., 2019 and Evensen et al., 2019 which has already been applied to
reservoir history matching and oceanography. This approach recasts the problem by seeking the
solution within the subspace spanned by the prior ensemble of models. As a test about feasibility
of the Bayesian approach we apply the algorithm to synthetic 3D model composed by two targets
of different resistivity within an homogeneous half-space.

2 Methods

The target pdf could be approximated through an ensemble-based method minimising an
ensemble of cost functions for each realization as:

T(m;) = 2 (m; - mf)TCrﬁl(mj —-mP) +-(g(m) - d;)" ¢z (g(m;) - dj) (1)
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where m; is the j-th ensemble member, m]’.’ is the j-th ensemble member of the prior ensemble, g

is the forward operator, C,, is the model covariance matrix, C; is the data covariance matrix of
dimension mxm and d; is the observed data of dimension m. Since our objective is to search for
the solution within the ensemble subspace (Evensen et al., 2019, Raanes et al., 2019), we define
the prior ensemble of model as:

M=(mlmb,...,mk) (2)

with N size of the ensemble and we define the zero-mean anomaly matrix as:

A=M (INE —NiEllT)/w/(NE —1) (3)

where 1 € R" is a vector of ones, Iy, is the identity matrix of dimension NyxNg, the matrix Iy, —

Ni subtract the mean from M. Evensen et al., 2019 and Raanes et al., 2019 suggests that the

e

solution is confined to the space spanned by the prior ensemble. Thus, we will search for the
solution in that space assuming that an updated ensemble M is equal to the prior ensemble, MP
plus a linear combination of ensemble anomalies 4,

MY = MP + AW  (4)

where W has dimension Ny xNg, then we rewrite the cost function for the j-th column of W as

T(w) = swfw +3(g(m) = ;) ¢i*(a(m)) ;) (5)

Evensen et al., 2019 suggests that minimizing (5) corresponds find the minima of the original cost
function (1) but restricted on the ensemble subspace. Thus, we are now searching for a solution in
a much smaller model space, solving for the Ny vectors w; € RNE,

2.1 Sensitivity approximation

To minimize the cost function in (5), our strategy is to employ a Gauss-Newton method for each
ensemble member, approximating the jacobian from the ensemble of models and data. In
particular, we compute the average sensitivity S at iteration i from the ensembles by linear
regression as (Evensen et al., 2019):

S =Y.07" (6)

where

Vo= gD (I — - 11T) VW=D (@)

is the predicted data ensemble anomalies, whereas (2, is:

0, =1+W, (INE - NiE11T)/w/(1vE 1) (8)

Thus, we can write the ensemble of models update at iteration i as:
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Wipr = W; —y(W; — ST (S:S] + C4) ™ H) (9)
where y € (0,1] is the step length parameter and H is
H=S5W;+D—gM;) (10)

where D the ensemble of perturbed observed data. In terms of dimensionality, the matrix W; has
dimension N;yxNpg, the average sensitivity has dimension mxNg and H has dimension mxNy. From
the equations above it is evident that the reformulation of ensemble based in the subspace
domain is able to reduce the model space dimension, linking the size of the ensemble to the
number of unknowns of the problem.

Synthetic test

To test the approach we build a simple model composed by two spheres of radius 165 m at depth
of 100 m and having a resistivity of 10 £2 - m and 1000 {2 - m embedded in a homogeneous half-
space of 100 2 - m (Cockett et al., 2015). The model is discretized using an octree mesh, in which
cell dimensions are powers of two larger than a prescribed base cell size, thereby keeping the total
number of cells computationally feasible (Cockett et al., 2015). The modelling domain has
dimension x, y, z of 8000, 8000, 4000 m for a total number of 85026 tetraedrical cells, whereas the
inversion mesh is composed by 71176 cells. The data is simulated through Simpeg open source
library (Cockett et al) with a dipole-dipole configuration composed by six lines, which performs a
3D acquisition. We generate the prior ensemble of models
using GSTools library (Miller et al., 2022), adopting a Gaussian random field generator in
accordance with the assumption of prior Gaussianity. As described in the previous section
(Equation 5 and 9), the ensemble size directly determines the number of unknowns of the inverse
problem. Consequently, its choice has to be a compromise between computational cost, model
space dimension and robust approximation of the pdf. In this example, we generate an ensemble
of 2000 models, which substantially reduces the model space from 71176 to 2000. The inversion
algorithms converges in few iterations for a total computational time of 13 hours in a laptop
equipped with Intel Core i7-1165G7 @ 2.80GHz. Both targets are well recovered, as indicated by
model slices normal to the Y-axis (Fig. 1c) and to the Z-axis (Fig. 1d). Moreover, the root mean
square error of the predicted data is 3.3%. The ensemble-based inversion provides an
approximation of the pdf, from which we can represent the standard deviation as a 3D volume
(Fig. 2a, clip normal to the Y axis) or as marginal distributions associated with individual model
cells. Fig. 2b illustrates the marginal distribution corresponding to a tetrahedral cell of the
homegeneous half-space, whereas Fig. 2c, 2d and Fig. 2e and 2f display one of the marginals pdf of
the high-resistivity and low-resistivity sphere, respectively. Fig. 2a, which represents the standard
deviation volume corresponding to the clip of Fig. 1c, exhibits low values of standard deviation
close to the surface.
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Fig. 1 — a) Clip of the 3D synthetic model perpendicular to Y axis. b) Clip of the 3D synthetic model perpendicular to Z
axis. ¢) Estimated mean model, clip normal to the Y axis. d)Estimated mean model, clip normal to the Z axis.
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Fig. 2 — a) Volume of standard deviation values b) Marginal pdf associated with the homogeneous half-space c) and d)
Marginal pdfs associated with the high resistive sphere. e) and f) Marginal pdfs associated with the low resistive
sphere.

Conclusions

This work introduces an alternative approach to invert ERT data in the Bayesian framework in a
large model space dimension without using lossy transform methods. As suggested by the 3D
synthetic test, where the anomaly shapes are reasonably well reconstructed in a feasible
computational time, the subspace ensemble-based algorithm appears promising for mitigating ill-
conditioning of the problem and reducing the computational cost. Moreover, uncertainty
guantification, expressed as a volume of standard deviations or 3D posterior realizations, can be
used to identify the most reliable regions of the model.
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A theoretical lower bound for the saturation
exponent in Archie’s law
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Introduction
Archie’s law is one of the most widely employed methods for the determination of electrical

conductivity of partially saturated porous media. The traditional Archie’s law (Archie, 1942) and the
modified one (Glover et al., 2000) hold the following forms:

0, nsat = O-W¢mSvI:f > (1)

u

O =0, 8"S)+0,(1-4"), (2)

where ounsat is the conductivity of the overall unsaturated porous medium; ow and os are the
conductivities of the pore water and the solid grains respectively; ¢ is the porosity; Sw is the water
saturation; m is the cementation exponent and n is the saturation exponent. Archie law is highly
dependent on the appropriate selection of m and more importantly of n. Several experimental
results illustrate that n is approximately 2 for the majority of water saturated rocks (e.g., Mavko et
al., 2009). Although n has been considered constant and unrelated to saturation levels, some new
perspectives suggest that n should vary with saturation (e.g., Worthington & Pallatt, 1992; Glover,
2017). We analyzed a database of some representative resistivity measurements performed on
partially saturated water-wetted porous media (Weerts et al., 1999; Han et al., 2009; Tang 2019;
Han et al., 2020; Mustofa et al., 2022; Pang et al., 2024) and evaluated the variability of n for
different saturation levels. The obtained results show that n under a given degree of saturation can
be less than 1.5 and even less than 1. Such “abnormal” saturation exponent value indicates that
new constraints on the saturation exponent value are required. This work aims to define such
constraints, by proposing a theoretical lower bound for the saturation exponent (denoted as LBSE
here).

Theory
We assume that the pore water adheres to the solid surface and it is fully and homogeneously

connected. The solid matrix is idealized as a series of spheroidal grains with a specific aspect ratio,
and residual water is considered as a uniform film adhering to the grain surfaces. The effect of the
water on the solid grains is represented as a modification in their shapes. These shape-modified
spheroids are subsequently employed to calculate the cementation exponent of the pore space
occupied by air (or oil). The water saturation exponent is then determined by quantifying the
connectedness of the residual water adhering to the solid surface. The obtained saturation
exponents vary with saturation and are here considered as a theoretical lower bound,
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corresponding to the highest water connectivity. The microstructure of our hypothesized
unsaturated porous medium is shown in Figure 1a. A similar structure has been reported in Fukue
et al.,, (1999). The water film is assumed adhering homogeneously at the grains’ surface (Figure 1b).

- Solid grain

A

T Water + Air
(a) (b)

Fig. 1 — (a) A schematic representation of the water distribution in the pore space according to our assumptions; (b) A
schematic representation of the water film surrounding the spheroidal grain.

Following derivation, we propose a formulation of the LBSE in the form:

In| ¢" —(¢—9¢S.)
LBSE = i W)}L s ﬂj_mﬂ, (3)
In(gS,) InS, InS,

where ¢ is the porosity; m is the cementation exponent; Sy is the saturation. The parameter iis the
cementation exponent of the residual pore space, which can be expressed by the aspect ratio 8 of
deformed grains:

5-3 - ﬂz 377 arccos f3

(4)

3-3 - ,[)’2 377 arccos f3

The aspect ratio ff can be obtained by solving the following cubic equation:

] el ) e o

This step can be easily simplifies by built-in functions in some general mathematical software.

In equation 5, a is the original aspect ratio of the grains, which can be calcualted by solving the
following equation:

3++/36m> —60m+9 1

a
- arccosa . (6)
6m 1-a’ (1_(12)/2

3
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Although there is no closed-form expressions for «, it can be calculated from m by some inversing
programs.

According to the lower bound of the saturation exponent (eq. 3), the lower bound of resistivity
(denoted as LBR) can be determined as follows:

¢mS£BSE s 1_¢m -
R

w N

LBR =

(7)

Validation

The saturation exponent from literature data is used to verify our proposed lower bound. Since the
calculated lower bound of n is related to the cementation exponent m, the bound varies among
different samples. To plot all the data points in a single figure, we analyse the difference between
the real saturation exponents and the theoretical lower bounds:

e=n_,—LBSE. (8)

real

The proposed lower bound can be validated if e is always positive for all data points. As shown in
Figure 2a, nearly all data points lie above zero, with only a data falling below 0, likely due to
experimental uncertainty. This distribution supports the validity of the proposed lower bound.

Figure 2b compares the resistivity lower bound from our LBSE against the HS bound. All data lie
above our bound except one close to it, in agreement to Figure 3a. In contrast, the HS bound is
below the data only at low saturation, while it reverses the position with respect the data at high
saturation. This shows that the LBSE proposed in this work provides a more reliable reference for
the electrical properties of unsaturated porous media, further confirming its accuracy and
applicability.

(@ 3 " T (b)10° " y "
* Tang(2019) " A Data of Mustofa etal (2022)
25+ t+ Pangetal(2024) + [g — — —Hassin-Shtrikman lowerbound
O Han etal (2020) + % 10t Lower bound of this work
ol A Mustofaetal 2022) + ¥
O Han etal (2009) o &
0 15| * Weersetal (1999) L+ N
2 Ovalueline ¢ 4 o =
> ®
b 1t Qﬁ *0* O u o kx| 2
& ¥ * x| 2
* ﬁpg*** & * ow|”
0.5 A A QuaOx * = Hok
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. . . 10! . . . .
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Fig. 2 —(a) The calculated differences between the real saturation exponents of the datasets and their correspondent
lower bounds; (b) Comparison between our lower bound of resistivity and the HS lower bound. The data points are from
Mustofa et al., (2022).

Conclusion

In this work, a theoretical lower bound of the saturation exponent in Archie’s law for partially
saturated porous media has been developed. The bound depends on saturation, porosity, and
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cementation exponent, and it was validated against existing data and the HS bound. It was
theoretically shown that the saturation exponent in water-wetted media can be less than 1,
indicating its range should not be limited to more than 1. Although the proposed LBSE does not
provide exact values, it offers a useful reference for experiments. Testing values below this bound
may induce errors in other parameters such as porosity or phases’ resistivities.

Acknowledgments
This work was financially supported by the China Scholarship Council, N0.202308620146.
References

Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir
characteristics. Transactions of the AIME, 146(1), 54-62. https://doi.org/10.2118/942054-G

Fukue, M., Minato, T., Horibe, H., & Taya, N. (1999). The micro-structures of clay given by resistivity
measurements. ¥*Engineering Geology, 54*, 43-53. https://doi.org/10.1016/50013-7952(99)00060-
5

Glover, P. W. J., Hole, M. J.,, & Pous, J. (2000). A modified Archie’s law for two conducting phases.
Earth and Planetary Science Letters, 180(3-4), 369-383. https://doi.org/10.1016/S0012-
821X(00)00168-0

Glover, P. W.J.(2017). A new theoretical interpretation of Archie's saturation exponent. *Solid Earth,
8%, 805—817. https://doi.org/10.5194/se-8-805-2017

Han, T., Liu, S., Xu, D., & Fu, L.-Y. (2020). Pressure-dependent cross-property relationships between
elastic and electrical properties of partially saturated porous sandstones. *Geophysics, 85*(3),
MR107-MR115. https://doi.org/10.1190/ge02019-0477.1

Mavko, G., Mukeriji, T., & Dvorkin, J. (2009). *The Rock Physics Handbook: Tools for Seismic Analysis
of Porous Media* (2nd ed.). Cambridge University Press.
https://doi.org/10.1017/CB09780511626753

Mustofa, M. B., Fauzi, U., Latief, F. D. E., & Warsa, W. (2022). Experimental and modeling of electrical
resistivity changes due to micro-spatial distribution of fluid for unconsolidated sand. *Journal of
Petroleum Science and Engineering, 208*, 109472. https://doi.org/10.1016/]j.petrol.2021.109472

Pang, M., Ba, J., Carcione, J. M., & Saenger, E. H. (2024). Combined acoustical-electrical modeling
for tight sandstones verified by laboratory measurements. *International Journal of Rock Mechanics
and Mining Sciences, 176*, 105682. https://doi.org/10.1016/j.ijjrmms.2024.105682

Tang, X. M. (2019). Experimental measurement and study on conduction mechanism and model for
artificial matrix-conductive low resistivity samples (in Chinese).


https://doi.org/10.2118/942054-G
https://doi.org/10.1016/S0012-821X(00)00168-0
https://doi.org/10.1016/S0012-821X(00)00168-0
https://doi.org/10.5194/se-8-805-2017
https://doi.org/10.1017/CBO9780511626753

Session 3.3 GNGTS 2026

Weerts, A., Kandhai, D., Bouten, W., & Sloot, P. (2001). Tortuosity of an unsaturated sandy soil
estimated using gas diffusion and bulk soil electrical conductivity. Soil Science Society of America
Journal, 65(6), 1577-1584. https://doi.org/10.2136/sssaj2001.6571577x

Worthington, P. F., & Pallatt, N. (1992). Effect of variable saturation exponent on the evaluation of
hydrocarbon saturation. SPE Formation Evaluation, 7(4), 331-336. https://doi.org/10.2118/20538-
PA

Corresponding author: han.yan@unito.it


https://doi.org/10.2118/20538-PA
https://doi.org/10.2118/20538-PA

